

FINITE ELEMENT ESTIMATES OF PUNCHING SHEAR STRENGTH

By

Gehad Samir Mohammed Younis

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Structural Engineering

FINITE ELEMENT ESTIMATES OF PUNCHING SHEAR STRENGTH

By Gehad Samir Mohammed Younis

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Structural Engineering

Under the Supervision of

Professor Dr. Adel Yehia Akl

Professor of Structural Engineering Civil Engineering Department Faculty of Engineering, Cairo University

Prof. Dr. Osman M.O. Ramadan

Dr.Kamal Ghamry Metwally

Professor of Structural Engineering Civil Engineering Department Faculty of Engineering, Cairo University Ass. Professor of Structural Engineering Civil Engineering Department Faculty of Engineering, Beni-Suef University

FINITE ELEMENT ESTIMATES OF PUNCHING SHEAR STRENGTH

By Gehad Samir Mohammed Younis

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Structural Engineering

Approved by the Examining Committee:

Prof. Dr. Adel Yehia Akl (The main supervisor)

Professor of Structural Engineering - Faculty of Engineering - Cairo University

Prof. Dr. Osman M.O. Ramadan (Member)

Professor of Structural Engineering - Faculty of Engineering - Cairo University

Prof. Dr. Atef Samy Gendy (Internal examiner)

Professor of Structural Engineering - Faculty of Engineering - Cairo University

Prof. Dr. Ahmed Mousaa Abd El-Rahman (External examiner)

Professor of RC structures - Faculty of Engineering at Mataria - Helwan University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015 **Engineer's Name:** Gehad Samir Mohammed Younis

Date of Birth: 19/9/1987 **Nationality:** Egyptian

E-mail: enginegehad@hotmail.com

Phone: +201003575448

Address: 8 Afify Ramdan st., Qalioub, Qalioubia

Registration Date: 1 / 3 / 2011 **Awarding Date:**/.../ 2015 **Degree:** Master of Science

Department: Structural Engineering

Supervisors:

Prof. Dr. Adel Yehia Akl

Prof. Dr. Osman Mohamed Osman Dr. Kamal Ghamry Metwally

(Ass. Professor of Structural Engineering, Beni-Suef

University)

Examiners:

Porf. Dr. Adel Yehia Akl

Porf. Dr. Osman Mohamed Osman

Prof. Dr. Atef Samy Gendy

Prof. Dr. Ahmed Mousaa Abd El-Rahman (External

examiner)

(Professor of RC structures, Faculty of Engineering at

Mataria - Helwan University)

Title of Thesis:

Finite Element Estimates of Punching Shear Strength

عنوان الرسالة:

تقدير مقاومة القص الثاقب بطريقة العناصر المحدودة

Key Words:

Flat plate; Reinforced concrete slab-column connections; Punching shear; Shear

strength; ANSYS

Summary:

This study employs the finite element (FE) method to investigate the punching shear strength of RC slab-column connections focusing on the effect of moment transfer from slab to column. The objective of the study is to compare the FE results to the two methods adopted by ECP-203: the simplified approach and the detailed one. This comparison is carried out for interior, edge, and corner slab-column connections with various levels of the moment transferred from slab to column. Numerical calculations of the punching shear strength using the FE method are conducted using the ANSYS software.

Acknowledgments

Praise to **ALLAH** Almighty and Peace is upon his Prophet **Muhammad**.

I would like to express my deepest gratitude and appreciation to my supervisor Professor Dr. Adel Yehia Akl for his caring guidance, encouragement, and support.

Deep appreciation and thanks are due to my Professor Dr. Osman M. O. Ramadan for his constant supervision, planning, guidance, valuable suggestions, precise advice and constant encouragement during all stages of this research work.

I would like to thank Dr. Kamal Ghamry for his precious contribution, especially in using software package ANSYS. Without him it would have not been possible to get high accuracy of FEM results.

Finally, I dedicate this study to my dear parents, brother, and sister, for their continuous encouragement and fruitful care.

Dedication

To my dear father, mother, brother, and sister with all my respect and love

Table of Contents

ACKNOWLEDGMENTS	I
DEDICATION	II
TABLE OF CONTENTS	III
LIST OF TABLES	VI
LIST OF FIGURES	
ABSTRACT	XI
CHAPTER 1: INTRODUCTION	1
1.1 General	1
1.2 Objectives	
1.3 SCOPE AND CONTENTS	
CHAPTER 2: LITERATURE REVIEW AND BASIC VARIABLES	4
2.1 General	4
2.2 METHODS OF PUNCHING SHEAR ANALYSIS	
2.2.1 Mechanical Model	
2.2.2 Broms Model	
2.2.3 Truss Model	
2.2.4 Strip Model	
2.2.5 Control Surface Approach	
2.3 PARAMETERS GOVERNING SHEAR STRENGTH OF FLAT SLABS	
2.3.1 Concrete Strength	
2.3.2 Reinforcement	24
2.3.3 In Plane Restraints	25
2.3.4 Aspect Ratio of Loaded Area (Column)	25
2.3.5 Size Effect (Span-Depth Ratio)	25
2.3.6 Perimeter to Depth Ratio (b ₀ /d)	26
2.3.7 Concrete Cover	26
2.4 SLABS WITH SHEAR REINFORCEMENT	26
2.4.1 Shear Reinforcement Types	27
2.5 FAILURE MECHANISMS	30
2.5.1 Symmetrical Punching	31
2.5.2 Punching with Unbalanced Moments	31
CHAPTER 3: PUNCHING SHEAR ANALYSIS USING ECP 203-2007	35
3.1 General	35
3.2 CASE OF STUDY AND LOADS	35
3.3 RESULTS OF B FOR AN INTERIOR SLAB-COLUMN CONNECTION ANALYSIS	36
3.3.1 Effect of f = a/b and $(e-M/O)$	36

3.3.2 Effect of Column Dimensions (bxb) to Slab Thickness Ra	atio (b/t _s)41
3.4 RESULTS OF B FOR AN EDGE SLAB-COLUMN CONNECTION	N ANALYSIS42
3.4.1 Effect of f _{cu} , a/b, and (e=M/Q)	42
3.4.2 Effect of Column Dimensions (bxb) to Slab Thickness Ra	atio (b/t _s)46
3.5 RESULTS OF B FOR CORNER SLAB-COLUMN CONNECTION	ANALYSIS47
3.5.1 Effect of f _{cu} , a/b, (e=M/Q)	
3.5.2 Effect of Column Dimensions (bxb) to Slab Thickness Ra	atio (b/t _s)52
3.6 Proposing Interaction Diagrams	53
3.7 RANGE OF APPLICATION	59
3.8 DISCUSSION	61
CHAPTER 4: FINITE ELEMENT ANALYSIS	62
4.1 General	62
4.2 Types of Reinforcement	63
4.3 CONCRETE CRACKING	64
4.4 Element Library	64
4.4.1 SOLID65 - 3-D Reinforced Concrete Solid	65
4.4.2 LINK180 - 3-D Spar (or Truss)	65
4.5 FINITE ELEMENT FORMULATION	66
4.6 MODELING OF REINFORCED CONCRETE IN ANSYS	66
4.6.1 Reinforcement	66
4.6.2 Concrete	67
4.7 CHOICE OF FINITE ELEMENT MESH	68
4.8 BOUNDARY CONDITIONS	68
4.9 THE STUDY MODELS	70
4.9.1 Model Properties and Loads	71
4.9.2 Analysis Result	73
4.10 DISCUSSION OF RESULTS	82
CHAPTER 5: PARAMETRIC STUDY	
5.1 Introduction	83
5.2 EFFECT OF CONCRETE COMPRESSIVE STRENGTH ON PURE	PUNCHING STRENGTH. 83
5.2.1 Studied Models	83
5.2.2 Results of the Analysis	87
5.2.3 Comparison between Current Codes Design Approaches	and Discussions90
5.3 EFFECT OF ECCENTRICITY ON PUNCHING STRENGTH	
5.3.1 Studied Models	91
5.3.2 Results of the Analysis	
5.3.3 Comparison between Current Codes Design Approaches	
5.4 EFFECT OF COLUMN DIMENSION TO SLAB THICKNESS RA	* ***
STRENGTH	
5.4.1 Studied Models	
5.4.2 Results of the Analysis	
5.4.3 Comparison between Current Codes Design Approaches	and Discussions103
CHADTED 6. CHMMADV AND CONCLUCIONS	105

6.1 General	105
6.2 Summary	105
6.3 Conclusions	106
6.4 RECOMMENDATIONS FOR FUTURE RESEARCH	106
REFERENCES	A
APPENDICES	D
APPENDIX A: ADDITIONAL FIGURES OF FEM RESULT SLAB-COLUMN CONNECTION	
APPENDIX B: ADDITIONAL FIGURES OF FEM RESULTS SLAB-COLUMN CONNECTION	
APPENDIX C: ADDITIONAL FIGURES OF FEM RESULT SLAB-COLUMN CONNECTION	
الملخص باللغة العربية	Q

List of Tables

Table 2.1: K ratios from unbalanced moment resisted by shear according to CEB-FIP model code 90
Table 3.1: Results of β' of an interior slab-column connection36Table 3.2: Results of β' of an interior slab-column connection41Table 3.3: Results of β' of an edge slab-column connection42Table 3.4: Results of β' of an edge slab-column connection47Table 3.5: Results of β' of corner slab-column connection48Table 3.6: Results of β' of corner slab-column connection53
Table 4.1: Description of the analyzed specimens
Table 5.1: Model properties to study the effect of compressive strength of concrete (f _{cu}) for interior slab-column connection under pure punching
Connection
column connection

List of Figures

Fig. 1.1: Flat Plate System	3
Fig. 2.1: Mechanical Punching Model by Kinnunen and Nylander (1960)	6
Fig. 2.2: High Radial Compression Stresses at Failure by Broms (1990)	
Fig. 2.3: Truss model by Alexander and Simmonds (1987)	
Fig. 2.4: layout of radial strips into strip model by Alexander	
Fig. 2.5: punching shear perimeter (ACI)	
Fig. 2.6: Assumed distribution of shear stresses (ACI)	
Fig. 2.7: Single or multiple-leg stirrup-type slab shear reinforcement (ACI)	
Fig. 2.8: Arrangement of stirrup shear reinforcement for interior column (ACI)	
Fig. 2.9: Arrangement of stirrup shear reinforcement for edge column (ACI)	
Fig. 2.10: punching shear perimeter (BS)	
Fig. 2.11: Typical arrangement of shear studs and critical sections outside shear-	19
	21
reinforced zone (BS 8110)	
Fig. 2.12: punching shear perimeters (CEB-FIP model code 90)	∠∠
Fig. 2.13: shear stress distribution due to unbalanced moment at edge column-slab	22
connection according to CEB-FIP Code 90	
Fig. 2.14: closed stirrups	
Fig. 2.15: bent up bars	
Fig. 2.16: structural steel shear heads	
Fig. 2.17: shear studs (http://www.vsl.net/construction_systems/shear_rail.html)	
Fig. 2.18: shear failure into flat plates	
Fig. 2.19: transfer of forces between floor and edge column	
Fig. 2.20: transfer of forces between floor and interior column	
Fig. 2.21: transfer of forces between floor and corner column	
Fig. 2.22: punching shear failure under combined shear and unbalanced moments	34
Fig. 3.1: β ' results of an interior slab-column connection for f_{cu} =25MPa and a/b =1	36
Fig. 3.2: β' results of an interior slab-column connection for f _{cu} =25MPa and a/b=1.5	537
Fig. 3.3: β ' results of an interior slab-column connection for $f_{cu}=25MPa$ and $a/b=2$	37
Fig. 3.4: β ' results of an interior slab-column connection for f_{cu} =30MPa and a/b =1	
Fig. 3.5: β ' results of an interior slab-column connection for f_{cu} =30MPa and a/b =1.5	
Fig. 3.6: β ' results of an interior slab-column connection for f_{cu} =30MPa and a/b =2	
Fig. 3.7: β ' results of an interior slab-column connection for f_{cu} =35MPa and a/b=1	
Fig. 3.8: β ' results of an interior slab-column connection for f_{cu} =35MPa and a/b=1.5	
Fig. 3.9: β ' results of an interior slab-column connection for f_{cu} =35MPa and a/b =2	
Fig. 3.10: β ' results of an interior slab-column connection for f_{cu} =25MPa and b/t_s =	
6)	
Fig. 3.11: β ' results of an edge slab-column connection for f_{cu} =25MPa and a/b=1	
Fig. 3.12: β results of an edge slab-column connection for $f_{cu} = 25MPa$ and $a/b = 1.5$	
Fig. 3.13: β results of an edge slab-column connection for $f_{cu} = 25MPa$ and $a/b = 1.5$	
Fig. 3.14: β ' results of an edge slab-column connection for $f_{cu} = 20MPa$ and $a/b = 2$	
Fig. 3.15: β ' results of an edge slab-column connection for $f_{cu} = 30$ MPa and $a/b = 1.5$	
Fig. 3.16: β ' results of an edge slab-column connection for $f_{cu} = 30$ MPa and $a/b=2$ Fig. 3.17: β ' results of an edge slab-column connection for $f_{cu} = 35$ MPa and $a/b=1$	
11g. 5.17. D Tesuits of an edge stad-column connection for $I_{\rm ch} = 55 \text{NMF} a$ and $a/b = 1 \dots$	4J

Fig. 3.18: β ' results of an edge slab-column connection for $f_{cu} = 35$ MPa and $a/b = 1.5$.46
Fig. 3.19: β ' results of an edge slab-column connection for f_{cu} =35MPa and a/b =2	.46
Fig. 3.20: β ' results of an edge slab-column connection for $f_{cu} = 25$ MPa and $b/t_s = (4 \text{ to})$	0
6)	.47
Fig. 3.21: β ' results of corner slab-column connection for $f_{cu} = 25MPa$ and $a/b=1$.48
Fig. 3.22: β ' results of corner slab-column connection for $f_{cu} = 25$ MPa and $a/b = 1.5$	
Fig. 3.23: β ' results of corner slab-column connection for $f_{cu} = 25$ MPa and $a/b = 2$	
Fig. 3.24: β ' results of corner slab-column connection for $f_{cu} = 30$ MPa and $a/b = 1$	
Fig. 3.25: β ' results of corner slab-column connection for $f_{cu} = 30$ MPa and $a/b = 1.5$	
Fig. 3.26: β ' results of corner slab-column connection for $f_{cu} = 30$ MPa and $a/b = 2$	
Fig. 3.27: β ' results of corner slab-column connection for $f_{cu} = 35MPa$ and $a/b = 1$	
Fig. 3.28: β ' results of corner slab-column connection for $f_{cu} = 35MPa$ and $a/b = 1.5$	
Fig. 3.29: β ' results of corner slab-column connection for $f_{cu} = 35MPa$ and $a/b = 2$	
Fig. 3.30: β ' results of corner slab-column connection for $f_{cu} = 25MPa$ and $b/t_s = (4 \text{ to})$	
1 ig. 5.50. p results of corner stab-column connection for $r_{cu} = 2500$ a and $tr(s) = (4.10)$	
Fig. 3.31: Interaction between Shear and Moment for Interior Column to Slab	.55
	51
Connection	
Fig. 3.32: Interaction between Shear and Moment for Edge Column to Slab Connecti	
(moment is applied inward the slab)	
Fig. 3.33: Interaction between Shear and Moment for Edge Column to Slab Connecti	
(moment is applied outward the slab)	.56
Fig. 3.34: Interaction between Shear and Moment for Corner Column to Slab	-7
Connection (moment is applied inward the slab)	.5/
Fig. 3.35: Interaction between Shear and Moment for Corner Column to Slab	~ 0
Connection (moment is applied outward the slab)	.58
Fig. 3. 36 : β' results of an interior slab-column connection for f_{cu} =25MPa and	
	.59
Fig. 3. 37 : β ' results of an edge slab-column connection for f_{cu} =25MPa and	
a/b=1/2,2/3,1,3/2, and2	.60
Fig. 3. 38 : β ' results of corner slab-column connection for f _{cu} =25MPa and	
a/b=1/2,2/3,1,3/2, and2	.60
Fig. 4.1: types of reinforcement (ANSYS)	.63
Fig. 4.2: concrete cracking strength (ANSYS)	.64
Fig. 4.3: Representation of concrete by SOLID65 - 3-D Reinforced Concrete Solid	
element (ANSYS)	
Fig. 4.4: Crack plane definition in global coordinate system (ANSYS)	.65
Fig. 4.5: Representation of reinforcement steel by LINK180 - 3-D Spar (or Truss)	
element (ANSYS)	
Fig. 4.6: reinforcement stress-strain curve input	.67
Fig. 4.7: concrete stress-strain curve input	.68
Fig. 4.8: finite element mesh used in the model	.69
Fig. 4.9: boundary conditions used in the model	
Fig. 4.10: Test setup; El-Salakawy et al. (1998)	.70
Fig. 4.11: Model dimensions (XXX, HXXX); all dimensions are in millimeters	
Fig. 4.12: Crack propagation at bottom surface for model (XXX) using ANSYS	
Fig. 4. 13: Failure cracks at bottom surface at failure vertical shear = 125 KN for mod	
(XXX) by El-Salakawy et al. (1998)	
Fig. 4. 14: Crack propagation at elevation surface for model (XXX) using ANSYS	

4. 15: Failure cracks at free edge at failure vertical shear = 125 KN for model	
(XXX) by El-Salakawy et al. (1998)	
Fig. 4. 16: Load deflection curve comparison for specimen (XXX) by experiment	
results and ANSYS	
Fig. 4. 17: Crack propagation at bottom surface for model (HXXX) using ANSY	YS78
Fig. 4. 18: Crack propagation at elevation surface for model (HXXX) using AN	SYS .80
Fig. 4. 19: Failure cracks at free edge at failure vertical shear = 69 KN for mode	:1
(HXXX) by El-Salakawy et al. (1998)	81
Fig. 4. 20: Load deflection curve for specimen (HXXX) by experimental results	and
ANSYS	82
Fig. 5.1: Interior model dimensions (mm)	84
Fig. 5.2: Edge model dimensions (mm)	85
Fig. 5.3: Corner model dimensions (mm)	86
Fig. 5.4: load deflection curve for models (S ₁ to S ₃)	89
Fig. 5.5: load deflection curve for models (S ₄ to S ₆)	
Fig. 5.6: load deflection curve for models (S ₇ to S ₉)	
Fig. 5.7: load deflection curve for models $(S_{10} \text{ to } S_{12})$	
Fig. 5.8: load deflection curve for models (S ₁₃ to S ₁₅)	
Fig. 5.9: load deflection curve for models (S_{16} to S_{18})	
Fig. 5.10: Interior model dimensions (mm) for studying the effect of column dir	
to slab thickness ratio (b/t _s)	
Fig. 5.11: Edge model dimensions (mm) for studying the effect of column dime	
slab thickness ratio (b/t _s)	
Fig. 5.12: Corner model dimensions (mm) for studying the effect of column dim	
to slab thickness ratio (b/t _s)	
Fig. 5.13: Cracks at failure vertical shear for models (S ₁₉)	
Fig. 5.14 Cracks at failure vertical shear for models (S ₂₀)	
Fig. 5.15: Cracks at failure vertical shear for models (S_{21})	
(/	
Fig.A.1: Finite element model	e
Fig.A.2: Finite element model's deflection	f
Fig.A.3: Finite element model's shear stress	g
Fig.A.4: Finite element model's second crack	h
Fig. B.1: Finite element model	i
Fig. B.2: Finite element model's deflection	i
Fig. B.3: Finite element model's shear stress	
Fig. B.4: Finite element model's second crack	
Fig. C.1: Finite element model	m
Fig. C.2: Finite element model's deflection	n
Fig. C.3: Finite element model's shear stress	
Fig. C.4: Finite element model's second crack	

Abstract

This study employs the finite element (FE) method to investigate the punching shear strength of RC slab-column connections focusing on the effect of moment transfer from slab to column. The objective of the study is to compare the FE results to the two methods adopted by ECP-203: the simplified approach and the detailed one. This comparison is carried out for interior, edge, and corner slab-column connections with various levels of the moment transferred from slab to column. Numerical calculations of the punching shear strength using the FE method are conducted using the ANSYS 14.0 software.

In the first part of the thesis, results of the detailed method of ECP-203 are compared with those of the simplified method adopted by the same code. Using these results, values of the factor β that if used with the simplified method would yield same results as the detailed method are estimated. Besides, the effect of the design variables like column size to slab thickness ratio, concrete strength, transfer moment, and column location (interior, edge, or corner) on the value of factor β are investigated. Thus, possible modification to the factor β is proposed for interior, edge, and corner slab-column connections.

Then, three-dimensional, nonlinear FE analyses of interior, edge, and corner slab-column connections subjected to general load configurations in which both vertical loads and moments are transferred from slab to column are conducted. The FE analyses considered the same design variables that were studied in the first part of the thesis and found to affect the punching shear strength of various slab-column connections. Besides, the FE results are used to describe the punching shear performance of slab-column connections and their modes of failure. Moreover, the punching shear strength, load-deflection relationship, and crack patterns predicted by the FE method are compared to their corresponding experimental results published by others. This comparison verified the accuracy and effectiveness of the adopted FE model in predicting the punching shear strength and performance of slab-column connections. Finally, the FE results are compared with the predictions of frequently applied design codes (ACI 318-05, ECP 203-07, CEBFIP MC 90 & BS 8110-97).