

Ain Shams University Faculty of Engineering Department of Architecture

Interactive Walls as an Approach for Enhancing Thermal Performance in Egypt

A Thesis Presented in Partial Fulfillment of the Requirements for Master of Science Degree in Architecture Engineering

By

Hisham Bahaa el Din Mohamed Mahmoud el Khodary

BSc in Architecture 2008 - Ain Shams University

Under Supervision

Professor Dr. Hanan Mostafa Kamal Sabry

Professor of Architecture and Environmental Control Ain Shams University

A.Prof.Ahmed Atef Al Desouky

Dr.Hazem M.Talaat Al Daly

Assistant Professor of Architecture and Environmental Control Ain Shams University Lecturer of Architecture Ain Shams University

November, 2014

Statement

This thesis is submitted to Ain Shams University for the M.Sc. degree in Architecture.

The work included in this thesis was carried out by the researcher at the Department of Architecture, Faculty of Engineering, Ain Shams University, and During the Period from December 2012 to November 2014.

No Part of this thesis has been submitted for a degree of a qualification at any other university or institute.

Name	Hisham Bahaa El din Mohamed Mahmoud El khodary
Signature	
Date	

Interactive Walls as an Approach for Enhancing Thermal Performance in Egypt

A Thesis Presented in Partial Fulfillment of the Requirements for Master of Science Degree in Architecture Engineering

Ву

Hisham Bahaa el Din Mohamed Mahmoud el Khodary

Board of Examiners

Board	Signature
Professor Dr.Mohamed Moemen Afify	
Professor of Architecture and Environmental Control, Department of Architecture-Faculty of Engineering ,Cairo University	
Professor Dr.Morad Abdelkader Abdelmohsen	
Professor of Architecture and Environmental Control, Department of Architecture - Faculty of Engineering, in Shams University.	
Professor Dr. Hanan Mostafa Kamal Sabry	
Professor of Architecture and Environmental Control, Department of Architecture - Faculty of Engineering, in Shams University.	
A.Prof.Ahmed Atef Al Desouky	
Assistant Professor of Architecture and Environmental Control, Department of Architecture - Faculty of Engineering, in Shams University.	

Date of research:

•	Approvai stamp:		
•	Date of approval:	/	/
•	Faculty board approval:	/	/
	University board approval:	/	/

Acknowledgments

Completing my M.Sc. degree is one of the most challenging activities of my life. During the journey of this research lots of drops and failures occurred. During this I had the honor to be surrounded by lots of people who insisted on giving me the hand of help and the encouragement needed to overcome the difficulties to complete this research.

It has been a great privilege to spend these years in the Department of Architecture at Ain Shams University; all its members will always remain dear to me. I would like to thank all the board of professors in the department for refusing to give up on me when I lost power and submitted my resignation. Also for providing the good environment to allow me complete the research.

First, and foremost, I offer my sincerest gratitude to my supervisors. Prof. Hanan Mostafa Kamal Sabry who has supported me throughout my thesis with her patience and knowledge and complete guidance. I attribute the level of my Master's degree to her encouragement and effort, without her this thesis would not have been completed or written.

I also owe Prof. Ahmed Atef al Desouky a lot for providing me with the general the vision, encouragement and advice, also for helping me in my career afterwards.

I would like to thank Dr. Hazem al Daly for his assistance, guidance and allowing me to work on this research with my own way.

I was blessed with marvelous colleagues in the department of architecture who all helped me and done a lot of my daily work in the department to give me space to complete my research. Dedicating a special thanks to my friends Mohamed Nagy and Mohamed Mekkawy who gave the hand of help in the hard times.

Finally I wish to thank all my family who always gave the hand of support and creating the peaceful environment around me to allow me reach my goal during my hard times of this research, also through all my study life to reach to this point.

Abstract

Thermal comfort in spaces is one of the most important aspects that architects aim to achieve during the design process of buildings. The building external walls play a main role in transferring heat to the designed spaces, therefore walls were developed to be interactive that have integration with building services such as HVAC, also to respond to the environment efficiently to achieve thermal comfort and to increase the productivity of building users. This thesis aims at defining a guideline for the thermal performance of interactive walls in Egypt through the use of different strategies of mechanically ventilated double skin facades (transparent walls) and automated shading systems (opaque walls). The research addresses the thermal performance of interactive walls in three different climatic regions in Egypt (Alexandria, Cairo and Aswan).

The thesis consists of two parts and ends with conclusions and recommendations. The first part introduces and classifies the interactive walls according to the factors affecting thermal performance of buildings. Transparent interactive walls is introduced in (Chapter 1) and its classifications according to ventilation mode. Chapter 2 illustrates the opaque interactive walls concepts and configurations, analytical case studies of buildings using transparent and opaque interactive walls to analyze the thermal performance. In The second part of the thesis an office space in three climatic regions in Egypt (Alexandria, Cairo and Aswan) was selected as a reference case and its thermal performance was analyzed (Chapter 3). The effect of using transparent and opaque interactive walls on thermal performance is analyzed through thermal simulations applied on the reference case, results were compared to the reference case results (Chapter 4). Conclusion of the thermal performance of transparent and opaque interactive walls is presented in (chapter 5) to be used as a guideline in Egypt.

The studied reference case were modeled using Integrated Environmental Solutions virtual environment IES-VE, thermal performance was simulated using Apache Sim engine integrated in IES-VE. Outputs were presented as space air temperature, energy use, predicted mean vote PMV and percentage of dissatisfied people PPD, Analysis was carried out during occupancy time in the peak day in the three climatic regions in Egypt.

Contents

Acknowledge	mentsi
Abstract	iii
Contents	v
List of Figur	esix
List of Table	sxv
List of Abbre	eviationsxvii
Glossary	xix
Introduction	1
Overview	3
Problem St	atement4
Research C	Objectives4
Research M	Methodology4
Research S	cope and Limitations5
Research S	tructure5
Previous A	cademic Research
1 Chapter	One: Interactive Walls11
1.1 Intr	oduction
1.2 Evo	olution of Interactive Walls14
1.2.1	Interactive Walls Definition
1.2.2	Benefits of Using Interactive Walls
1.2.3	Interactive Walls Classification
1.3 Tra	nsparent Ventilated Double Walls
1.3.1	Double Skin Façade Definition and concept
1.3.2	Double Skin Facades Solar Heat Gain Control20
1.3.3	Working Principles of Ventilated Double Skin Facades21
1.3.4	Cooling Season
1.3.5	Heating Season
1.3.6	Ventilation Modes of Double Skin Facades
1.3.7	

1.4	Analytical Case Studies
1.4.	1 Twofour54° Zone Project UNStudio30
1.4.	2 Abu Dhabi Financial Center Goettsch Partners34
1.4.	Cleveland Clinic, Abu Dhabi HDR Architecture38
1.5	Summary and conclusion40
2 Cha	apter Two: Opaque Interactive Walls43
2.1	Introduction
2.2	Automated Shading Systems
2.2.	1 Definition and Concept46
2.2.	Working Principles of Automated Shading Systems47
2.3	Analytical Case Studies
2.3.	1 El Bahar Towers Aedas Architects
2.3.	Thematic pavilion Soma ZT GmbH
2.4	Phase Change Materials (PCM)
2.4.	1 Definition and concept
2.4.	Working Principles60
2.5	Analytical Case Studies
2.5.	1 TrekHaus Robert Hawthorne
2.6	Dynamic Insulation Walls64
2.6.	1 Definition and concept
2.6.	Working Principles
2.6.	3 Performance
2.7	Analytical Case Studies
2.7.	1 Case study: an office space67
2.8	Summary and conclusion
3 Cha	apter Three: Energy Modeling Analysis71
3.1	Introduction
3.2	Climatic Classification of Egypt
3.2.	1 Weather Data Files
3.3	Climatic Characteristics of the Studied Cities
3.3. Page vi	

3.3.2	Cairo
3.3.3	Aswan81
3.4 En	ergy Modeling and Software Review83
3.4.1	Energy Modeling Software Choice Methodology84
3.4.2	Selected Energy Modeling Software
3.5 Th	ermal Simulation Description of the Output89
3.5.1	Air Temperatures89
3.5.2	Energy Use89
3.5.3	Predicted Percentage Dissatisfied (PPD)89
3.5.4	Predicted Mean Vote (PMV)89
3.6 Re	ference Case Specifications90
3.6.1	Reference Case Geometry Description90
3.6.2	Reference Case Construction Materials91
3.6.3	Reference Case Modeling93
3.6.4	Modeling the Complete Building93
3.6.5	Modeling the Unit to Be Thermally Studied93
3.6.6	Assigning building templates94
3.7 Re	ference Case Simulation Process97
3.8 Th	ermal Simulation Results99
3.8.1	Stage One: the whole year period results99
3.8.2	Stage Two: Peak day detailed results:
۳,۹ Su	mmary and Conclusion
4 Chapte	r Four: Interactive Walls Thermal Simulation Results121
4.1 Int	roduction
4.2 Tra	ansparent Walls Simulation Scenario (Double Skin Facades)124
4.3 Do	uble Skin Facades Simulation Results (Strategies 1 & 2)
4.3.1	ALEXANDRIA. (DSF SIMULATION STRATEGY 1)127
4.3.2	CAIRO. (DSF SIMULATION STRATEGY 1)128
4.3.3	ASWAN. (DSF SIMULATION STRATEGY 1)129
4.3.4	ALEXANDRIA. (DSF SIMULATION STRATEGY 2)130
4.3.5	CAIRO. (DSF SIMULATION STRATEGY 2)131
	Pago Lvii

4.3.6	ASWAN. (DSF SIMULATION STRATEGY 2)132
4.4 Op	aque Walls Simulation Scenario (Automated Shading System)133
4.4.1	ALEXANDRIA. (AUTOMATED SHADING SYSTEM)137
4.4.2	CAIRO. (AUTOMATED SHADING SYSTEM)138
4.4.3	ASWAN. (AUTOMATED SHADING SYSTEM)139
4.5 Su	mmary and Conclusion141
4.5.1	Double Skin Façade Performance
4.5.2	Automated Shading System Performance
5 Chapte	r Five: Conclusions and Recommendations143
5.1 Co	nclusions
5.1.1	Thermal performance guideline for (Alexandria)145
5.1.2	Thermal performance guideline for (Cairo)145
5.1.3	Thermal performance guideline for (Aswan)146
5.2 Re	commendations
5.3 Fu	ture Work150
References.	
I. Book	s151
II. Resea	arch Papers151
III. Th	eses
IV. We	bsites
V. Repo	rts155
VI. So	ftware

List of Figures

CHAPTER 1
Figure 1-1 Detail at double skin facade
Figure 1-2 Double skin façade components
Figure 1-4 solar heat gain control through double skin facade
Figure 1-3 solar heat gain control through single pane of glass20
Figure 1-5 Cooling Season using mechanical ventilation scheme (the use of HVAC
return air to cool down the cavity)
Figure 1-6 Cooling season using natural ventilation scheme in DSF23
Figure 1-7 Heating Season using mechanical ventilation scheme (the use of room
warm air to ventilate the cavity)24
Figure 1-8 Heating season in case of sealed cavity scheme in DSF24
Figure 1-9 Double skin façade configurations according to partitioning of the cavity.
26
Figure 1-10 Wall section detail - shaft box system26
Figure 1-11 Wall section for corridor type DSF
Figure 1-12 Perspective view for corridor type DSF27
Figure 1-13 Elevation and wall section for shaft box type DSF28
Figure 1-14 Multi-storey configuration type28
Figure 1-15 Updated world map of the Köppen-Geiger climate classification. Desert
climate (BWh, BWk)29
Figure 1-16 Different perspective shots for Twofour54° Zone Project30
Figure 1-17 3d Detail of the double skin façade
Figure 1-18 Cross sectional detail of the double skin façade32
Figure 1-19 Twofour54° exploded skin structure33
Figure 1-20 Different perspective shots for Abu Dhabi financial center35
Figure 1-21 Double skin façade configuration35
Figure 1-23 Double skin façade configuration
Figure 1-23 Double skin façade configuration during the summer and winter36
Figure 1-24 Solar visualization analysis of Abu Dhabi Financial District using Sun
Cast
Figure 1-25 Different perspective shots Cleveland clinic
Figure 1-26 Double skin façade configuration detail at Cleveland patient tower39
Figure 1-27 Relation matrix between different categories of double skin facades41
CHAPTER 2