THE EFFECT OF SOME ENGINEERING FACTORS ON FLEXIBLE SPRINKLER IRRIGATION SYSTEMS PERFORMANCE

By

ENGY MOSLAME MOHAMED KHAIR

B.Sc. Agric. Eng. (Agricultural Engineering), Ain Shams University, 2011

A thesis submitted in partial fulfillment $$\operatorname{of}$$ the requirements for the degree of

MASTER OF SCIENCE

In

AGRICULTURAL SCIENCE (On Farm Irrigation and Drainage Engineering)

Department of Agricultural Engineering
Faculty of Agriculture
Ain Shams University

Approval Sheet

THE EFFECT OF SOME ENGINEERING FACTORS ON FLEXIBLE SPRINKLER IRRIGATION SYSTEMS PERFORMANCE

By

ENGY MOSLAME MOHAMED KHAIR

B.Sc. Agric. Eng. (Agricultural Engineering), Ain Shams University, 2011

11118	This thesis for the M. Sc. Degree has been approved by:						
Dr.	El-Saied Mohamed khalifa						
	El- Sheikh	University					
Dr.	Mahmoud	Mohamed	Hega	nzi			
	Emeritus	Professor	of	Agricultural	Engineering,	Faculty	of
	Agricultur	e, Ain Shan	ns U	niversity.			
Dr.	Khaled Faran Taher El-Bagoury						
	Associate	Professor	of	Agriculture	Engineering,	Faculty	of
	Agricultur	e, Ain Shan	ns U	niversity (supe	ervisor).		
Dr.	Abdel -Gl	hany Moha	med	El-Gindy			
	Emeritus	Professor	of	Agricultural	Engineering,	Faculty	of
	Agricultur	e, Ain Shan	ns U	niversity (Prin	cipal Superviso	or).	

Date of Examination: 23 / 5 / 2015

THE EFFECT OF SOME ENGINEERING FACTORS ON FLEXIBLE SPRINKLER IRRIGATION SYSTEMS PERFORMANCE

By

ENGY MOSLAME MOHAMED KHAIR

B.Sc. Agric. Eng. (Agricultural Engineering), Ain Shams University, 2011

Under the supervising of:

Dr. Abdel-Ghany Mohamed El-Gindy

Emeritus Professor of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University. (Principle Supervisor)

Dr. Khalid Faran Taher El-Bagoury

Associate Professor of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University.

Dr. Wael Mahmoud Sultan

Senior Researcher at Agricultural Engineering Research Institute **AEnRI**.

ABSTRACT

Engy Moslame Mohamed Khair: The Effect of Some Engineering Factors on Flexible Sprinkler Irrigation Systems Performance. Unpublished M. Sc. Thesis, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, 2015.

The engineering factors are necessary to improve sprinkler system efficiency. So, with studying the effect of operating pressure, nozzle diameter and riser height on sprinkler performance such as precipitation rates, distribution uniformity, and coefficient uniformity. This study will be focused in Floppy sprinkler irrigation system comparing with Rotating (pop-up) and Impact sprinklers performance. It has been carried out at the National Irrigation Lab. for on-farm Irrigation Equipment Test in Agricultural Engineering Research Institute. The result indicated to: the floppy sprinkler is the highest precipitation rate. Where under operating pressure 2 bar Precipitation Rates were (9.3, 9.14 and 7.65mm/h), The flow rates were (748.8, 660 and 666 lph), wetted radius (7, 7.2 and 9 m), Coefficient Uniformity "%" were (53.45, 68.7 and 54.9%) and when using overlap simulation by Excel, the sprinklers achieve at operating pressure (2bar) and 100% overlap 78.05, 81.04 and 57.6% for Floppy, Rotating (pop-up) and Impact sprinklers respectively. From Private Farm result, if we applied the Floppy sprinkler system, the operating structure would be as follow: with 72% overlap the system achieved DU% 70.6% (from ASAE it's good design). At the AEnRI, The result indicated to the less soil compaction caused from Floppy sprinkler 0.27g/cm³ under 2 m height, unlike Impact sprinkler caused soil compaction under 1 m height (0.55 g/cm³). This study can be useful to identify the operational condition like operating Pressure and sprinkler irrigation system design so using floppy sprinkler is the more efficient flexible sprinkler irrigation system under telescopic riser 2 m height and under operating Pressure 2 bar.

Key words: Sprinkler Irrigation system, Floppy sprinkler, Impact sprinkler, Rotating sprinkler (pop-up).

ACKNOWLEDGMENT

Thanks to **Allah** for his gracious kindness in all the endeavors that the author has taken in her life.

The author wishes to express gratitude and most appreciation to her advisor **Prof. Dr. Abdel -Ghany El-Gindy**, Emeritus Prof. of Agric. Eng., Ain shams Univ. for valuable advice and encouragement.

The author also wishes to thank **Dr. Khalid Faran** Associate Professor of Agric. Eng., Ain shams Univ. for supervising my work.

With sincere appreciation due to **Dr. Wael Sultan**, Senior Researcher for Agricultural Engineering Research Institute for his constant help and advice.

Thanks a lot to **Dr. Mustafa Mahmoud**, Senior Researcher for Agricultural Engineering Research Institute for his great effort throughout this work.

Thanks a lot to **Proff. Dr. Hegazi**, Emeritus Prof. of Agric. Eng., for valuable advice at this work

Thanks a lot to **Proff. Dr. Khalifa** Emeritus Prof. of Agric. Eng., for valuable advice at this work

Thanks are expressed to the owners of **Abo-salah farm**, for their cooperation during carried out this work.

The author wishes to express her deepest appreciation to **her family** for their understanding, patient, loving encouragement and co-operation during carried out this work.

Finally, special thanks to all staff of the National Irrigation Lab for onfarm Irrigation Equipment Test in Agricultural Engineering Research Institute, for their valuable help in this work.

CONTENTS

No.	Title	Page
	LIST OF TABLES	iv
	LIST OF FIGURES	V
	LIST OF APPENDIX	vii
I.	INTRODUCTION	1
II.	REVIEW OF LITERATURE	3
	2.1.Pressurized irrigation system	3
	2.2.Definition of sprinkler irrigation system	3
	2.3.Sprinkler types	5
	2.3.1.Floppy Sprinkler	5
	2.3.2. Rotor Sprinkler (POP UP)	7
	2.3.3.Impact sprinkler	8
	2.4.Sprinklers irrigation system evaluation	8
	2.4.1.Uniformity of sprinkler irrigation system	8
	a. Distribution uniformity	9
	b. Christiansen Uniformity Coefficient	11
	2.4.2. Evaluating sprinkler irrigation system	12
	flow rates	
	2.4.3.Droplet size measuring technique	13
	a. Stain method	13
	2.4.4. Droplet size effect on soil compaction	14
	2.4.5.Engineering factors	16
	a. Effect of pressure on wetted diameter	16
	b. Effect of nozzle diameter, pressure on	16
	droplet diameter	

	c. Riser height effect on sprinkler	17
	Performance	
III.	MATERIALS AND METHODS	18
	3.1.Materials	18
	3.2.Methods	24
	3.2.1.Measuring technique	24
	3.2.2.Sprinkler evaluation Calculation	
	Methods	25
	a. The operating efficiency	25
	b. The flow rate	26
	c. The distribution uniformity	26
	d. The Christiansen Uniformity	27
	Coefficient	
	e. The water use efficiency	27
	f. Bulk density (Db)	28
IV.	RESULT AND DISCUSSION	29
	4.1.Laboratory Experiment	29
	4.1.1.Precipitation rate	29
	4.1.2.Flow rate	30
	4.1.3.The effect of droplet diameter	31
	4.1.4.Christiansen uniformity coefficient for	32
	single sprinkler	
	4.1.5. Distribution form along single cans line	33
	4.2.Field Experiment	
	4.2.1.Precipitation rate	36
	4.2.2.Precipitation rate distribution	37
	4.2.3.Wetted radius	
	4.2.4.The effect of droplet diameter	
	4.2.5.Distribution uniformity	40
	4.2.6. Christiansen uniformity coefficient	41
	4.2.7. Distribution form along single cans line	42

	4.2.8. Water use efficiency	43
	4.3.Expert system	44
	4.3.1.Applying Expert System	44
	4.4.The effect of riser height	44
	4.4.1.Soil compact	44
	4.4.2.Sprinkler performance	47
V.	SUMARY AND CONCLUSION	49
VI.	REFERENCE	52
VII.	APPINDICES	58
	ARABIC ABSTRACT	

LIST OF TABLE

No.	Titles	Page
2.1.	Quality Rating of the Overall Irrigation System.	10
2.2.	Rating of Lower Quarter Distribution Uniformity	
	(DULQ) for Sprinkler Zones.	11
4.1.	Alfalfa yield and water use efficiency value under	
	Floppy sprinkler network	44
4.2.	The comparison between Expert System and field	
	experiment.	44

LIST OF FIGURES

No.	Title	Page
3.1.	Three types of sprinklers	19
3.2.	The sprinklers network	21
3.3.	The Expert System	24
3.4.	The array precipitation rate cans	27
4.1.	Precipitation rates (mm/h) vs. operating pressure (bar)	29
4.2.	Flow rates (lph) vs. operating pressure (bar)	30
4.3.	Effect of droplet diameter (cm) vs. Operating Pressure (bar)	32
4.4.	Christiansen uniformity coefficient (%) vs. operating pressure (bar)	33
4.5.	Distribution form along cans line for FLOPPY	34
4.6.	Distribution form along cans line for Rotating(POP UP)	34
4.7.	Distribution form along cans line for Impact	34
4.8.	Precipitation Rate (mm/h) vs. Operating Pressure (bar)	36
4.9.	Precipitation Rate for FLOPPY (mm/hr) at field experiment under 1.75bar	37
4.10.	Precipitation Rate for FLOPPY (mm/hr) at field experiment under 2bar	37
4.11.	Precipitation Rate for FLOPPY (mm/hr) at field experiment under 2.25bar	38
4.12.	Wetted coverage radius vs. operating pressure	39

4.13.	Effect of Droplet Diameter vs. Operating Pressure	40
4.14.	Distribution uniformity vs. operating pressure	40
4.15.	Christiansen uniformity coefficient vs. operating pressure	42
4.16.	Distribution form along can line at operating pressure 1.75 bar	42
4.17.	Distribution form along can line at operating pressure 2 bar	43
4.18.	Distribution form along can line at operating pressure 2.25 bar	43
4.19.	Decline in soil surface level (mm) vs. riser heights	45
4.20.	The upturn in weight of soil profile vs. riser heights	45
4.21.	Bulk density of soil sector vs. riser heights	46
4.22.	Precipitation rate vs. riser heights	47
4.23.	Distribution uniformity (DU%) vs. riser heights	47
4.24.	Christiansen coefficient uniformity (CU %) vs. riser heights	48

LIST OF APPENDICES

No.	Title	Page
7.1.	Contours line of Floppy sprinkler	58
7.2.	Contours line of Rotating (POP UP) sprinkler	59
7.3.	Contours line of Impact sprinkler	60
7.4.	Expert system Distribution pattern	61

1-INTRODUCTION

The sprinkler irrigation system simulates the natural falling rain. The major problem in Egypt is low water management, which effect on sprinklers performance beside water use efficiency. The sprinkler irrigation system is less efficient so we should improve its performance to integrated water management. This indicated to take high crop yield and not to waste water at Evapo-transportation rate or deep percolation and increasing the reclaimed lands.

El-Gindy (2007) reported that, water considered the iterance to agriculture development. Egypt is in arid region due to decrease the rainfall under 400 mm/year. The new irrigation methods have more management in irrigation water with using sprinkler systems and localized systems which used to decrease drainage, improve soil water contents, decrease ground water level and increase crop production. **Hegazi and El-Gindy (2007)**, mentioned that, the pressure and orifice diameter effect at flow rate and wetted diameter and wetted efficiency. Hunter (2012), Water pressure in an irrigation system will affect the performance of the sprinklers. If the system is designed correctly, there will be enough pressure throughout the system for all sprinklers to operate properly. Rain bird (2004), stated that, we have found that conditions which most often interfere with the proper operation of impact sprinklers are low water pressure, foreign materials in the irrigation water, and excessive damage or wear to sprinkler parts. Any one or a combination of these actors can cause the sprinkler to stop rotating completely or rotate to one side and fail to return. BREYTENBACH A. (2012), mention that, the flow of water secured by the flow controller warrants a constant flow of water moving through the silicone tube to cut the stream of water into even medium-sized droplets similar to rain, ensuring a very high efficiency with minimum evaporation loss, due to little or no mist formation.

The main objectives of this study were:

- Recommended by appropriate operating conditions for Floppy Sprinkler.
- Violation of Floppy software.
- Comparison between the performance of Impact Sprinkler, Rotating (pop-up) Sprinkle and flexible Sprinkler.
- Studying the effect of difference riser height at soil Profile under many kinds of sprinkler.
- Evaluating sprinklers performance at different riser height under different sprinkler.