

Determination of Optical and Thermal Properties of Nanoparticles using Photoacoustic Technique

A Thesis

Submitted as a partial fulfillment for requirements of the Faculty of Science for the degree of

M. Sc. in Physics

By

Ahmed Shehata Ahmed Hassanien

B. Sc. 2004

Supervised by

Prof. Dr. Hassan Talaat

Prof. Dr. Sohair Negm

Professor of Physics

Professor of Physics

Faculty of Science

Faculty of Engineering (shoubra)

Ain Shams University

Benha University

Prof. Dr. Saied Abdallah

Professor of Physics

Faculty of Engineering (shoubra)

Benha University

Approval Sheet

Student Name: Ahmed Shehata Ahmed Hassanien

<u>Thesis Title:</u> Determination of Optical and Thermal Properties of Nanoparticles using Photoacoustic Technique.

<u>Degree:</u> Master of Science (Physics).

Supervision Committee:

Prof. Dr. Hassan Talaat

Faculty of Science - Ain Shams University.

Prof. Dr. Sohair Negm

Faculty of Engineering (shoubra)- Benha University.

Prof. Dr. Saied Abdallah

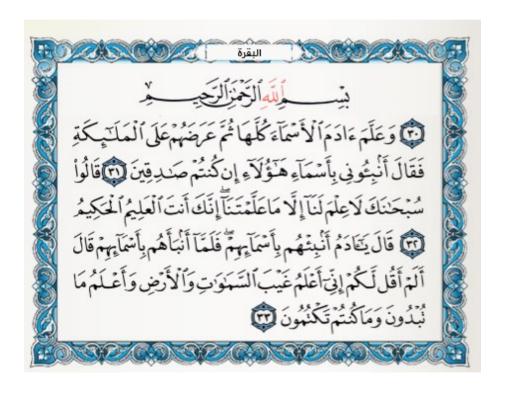
Faculty of Engineering(shoubra) - Benha University.

Higher Studies

Thesis Approval Date:	/	/
Faculty Council Approval:	/	/
University Council Approval:	/	/

Student Name: Ahmed Shehata Ahmed Hassanien

Degree: Master of Science (Physics)


Department: Physics

Faculty: Science

University: Ain Shams

Graduation Year: 2004

Thesis Approval Year: 2015

Acknowledgment

All gratitude at first and at last is to Allah,

I wish to express my appreciation to my supervisor, *Prof. Dr. Hassan Talaat* for suggesting this point for research. I would also like to thank him for his guidance all through this work.

I would like to express my gratitude to my supervisor **Prof. Dr. Sohair Negm** for her constant encouragement, guidance, and enriched discussions throughout this study.

My deep thanks to *Prof. Dr. Saied Abdallah* for his continuous help, support and guidance which has steered me toward my destination.

I would like to thank *Dr. Mona Bakr* (NIELS) for her support, guidance and the opportunity she gave me to carry out this work, and also for her unreserved suggestion and endless help not only in this research, but also in my personal life.

My thanks are also to *Dr. Tamer Abdallah* (ASU), *Dr. Tarek Ahmed* (ASU), *Dr. Khaled Esawi* (BU), *Dr. Noha* (ASU), *Dr. Ali Okasha* (NRC), and *Dr. Ahmed Bakr* (HU) for their sincere help, and useful discussions had been of great support to me.

I am grateful for all my colleagues at NanoTech Egypt, Bahgat group specially *Dr. Aman-Allah*, *Chem. Ahmed Sadek* and *Phys. Ahmed Nabil* and at faculty of engineering, Benha university; *assis. teach. Ahmed Khaled, Mohamed Nabil and Eng. Amr Hussein*.

It is a blessing to have studied with prof. Talaat's group. I would like to thank them for their sincere help especially for *assis. lect. Hend Awad*. Also thanks for my colleagues *Mahmoud Saad*, *Heba* and finally *Rana*.

Most importantly, I want to thank my parents and my parents in law, my sister and my brother for their constant encouragement and endless help.

I am especially and deeply grateful to my lovely wife, she was patient, helpful, and she offered willingly all the attention and supportive care along this work, I would like to thank her and my beloved son *Yassien*.

Contents

Abstract	i
List of Figures	iii
List of Tables	xiii
Chapter 1: Introduction	1
1.1 General Introduction	1
1.1.1 <u>Definitions: Nanometer, Nanoscale</u> Nanotechnology	
1.1.2 History of Nanotechnology	5
1.1.3 Applications of Nanotechnology	10
1.2 Photothermal Spectroscopy	16
1.2.1 Photoacoustic Spectroscopy	19
<u>1.2.1.1</u> <u>History</u>	20
1.2.1.2 Advantages	22
1.3 Aim of the work	23
References	25
Chapter 2: Theory of Photoacoustic Spectroscopy	<u>.</u> 27
2.1 Introduction	27

Contents		-
<u>2.2</u>	Heat flow equations 28	3
<u>2.3</u>	Temperature distribution in the cell 30	0
<u>2.4</u>	Production of the acoustic signal 33	5
<u>2.5</u>	Special cases 37	7
<u>2.6</u>	Photoacoustic signal as amplitude and phase 43	3
Refer	<u>ences</u> 5	1
<u>Chapte</u>	r 3: Physics of Semiconductor Nanocrystals	
	52	1
<u>3.1</u>	Energy Bands: Metals, Semiconductors and Insulators	
	52	2
<u>3.2</u>	Excitons 58	
<u>3.3</u>	Quantum Confinement and Low Dimensional Systems	
	60)
<u>3.4</u>	<u>Different Methods for Quantum Dots Fabrication</u> 65	5
<u>3.4</u>	.1 <u>Lithographic Quantum Dots</u> 6:	5
<u>3.4</u>	.2 Epitaxial Growth of Quantum Dots 66)
3.4	.3 Colloidal Synthesis of Quantum Dots 6	8
3.5	Optical Properties of Quantum Dots 69)
3.6	Core/Shell Semiconductor Nanoacrystals 74	ļ
Refer	ences 79)
<u>Chapte</u>	<u>r 4: Experimental Techniques80</u>)

α		. 4 .		4 -
C	or	1T6	n	TS.

<u>4.1</u> <u>Sa</u>	nples Preparation		80
<u>4.2</u> <u>Ch</u>	aracterization		82
4.2.1	Vis/NIR Spectrophot	<u>ometry</u>	82
<u>4.2</u>	.1.1 Optical Absor	ption Spectroscopy	82
4.2	.1.2 Photolumines	cence Spectroscopy	88
<u>4.2.2</u>	High Resolution Microscopy		
4.2.3	Photoacoustic Spectro	oscopy (PAS)	100
<u>4.1</u>	.1.1 METC Model	300 PA Cell	102
<u>4.2</u>	.3.3 Model SR 830	Lock-In Amplifiers	103
<u>4.2</u>	.3.4 Model PTI 102	2 Grating Monochro	<u>mator</u>
			105
<u>Referenc</u>	<u></u>		
			108
Chapter 5:	<u>es </u>	ssions	108 109
Chapter 5:	Results and Discu	<u>ssions</u>	108 109
<u>Chapter 5:</u> 5.1 HE	Results and Discu	<u>1</u>	108 109 109
<u>Chapter 5:</u> <u>5.1 HF</u> <u>5.1.1</u> <u>5.1.2</u>	Results and Discu TEM Characterization Particle Size Analysis	ssions 1 S HR Imaging	108109109111
<u>Chapter 5:</u> <u>5.1 HF</u> <u>5.1.1</u> <u>5.1.2</u>	Results and Discustree TEM Characterization Particle Size Analysis SAED Analysis and I	SESSIONS NEW YORK THE SERVICE OF TH	108109109109111114
<u>Chapter 5:</u> <u>5.1 HE</u> <u>5.1.1</u> <u>5.1.2</u> <u>5.2 Or</u>	Results and Discustree TEM Characterization Particle Size Analysis SAED Analysis and Internal Absorption Meas	SSIONS Note that I was a second seco	108109109111114114

Appendix	<u>x A</u>	143
Chapter 6	: Conclusion	140
<u>Referenc</u>	<u>es</u>	136
<u>5.4.3</u>	Thermal Conductivity (k)	134
<u>5.4.2</u>	Thermal Effusivity (e)	131
<u>5.4.1</u>	Thermal Diffusivity (α)	128
<u>5.4</u> <u>Th</u>	nermal Parameters Measurements	128
<u>5.3.2</u>	Photoluminescence Quantum Yield	124
5.3.1	Photoluminescence Spectra	122
Contents		

List of Figures

Figure 1.1:	Feeling the Nanoscale: A football compared in size to Earth is like the fullerene molecule constituting 60 atoms of covalently bonded carbon compared in size to the football
Figure 1.2:	The Scale of things4
Figure 1.3:	The scanning tunneling microscope (middle) developed by Gerd Binnig (right) and Heinrich Rohrer (left) at IBM Zurich Research Laboratory in the top image. The bottom image shows the principle behind it on the macroscopic scale (a) and on the atomic scale (b)
Figure 1.4:	Nanotehenology in Construction: Nanocoatings containing titanium dioxide nanoparticles (left) car be self-cleaning as compared to untreated surface (right) (Source: AVM Industries, Inc.)
Figure 1.5:	Colloidal solution of semiconductor quantum dots irradiated with UV light (top image) with tunable emission and high quantum yield (middle image)

	used for highly efficient organic light emitting diodes applied in OLED display manufactured by SAMSUNG (bottom image)
Figure 1.6:	Photothermal Cancer Therapy; the thermal ablation of cancer cells assisted by nanoshells coated with metallic layer and an external energy source – (Source: National Cancer Institute)
Figure 1.7:	Photothermal phenomena caused by illumination of a surface by a modulated. beam of light18
Figure 1.8:	Schematic diagram of photoacoustic effect20
Figure 2.1:	Cross sectional view of a simple cylindrical PA cell
Figure 2.2:	Schematic representation of special cases of the PA effect in the solid
Figure 2.3:	Amplitude (a) and phase (b) of the PA signal as a function of $\beta\mu_s$
Figure 3.1:	Linear combinations of atomic orbitals (LCAO): The LCAO when 2 atoms are brought together leads to 2 distinct "normal" modesa higher energy anti-bonding orbital and a lower energy bonding

	orbital. Note that the electron probability density is
	high in the region between the ion cores (covalent
	"bond"), leading to lowering of the bonding energy
	level and the cohesion of the crystal. If instead of 2
	atoms, one brings together N atoms, there will be N
	distinct LCAO, and N closely spaced energy levels
	in a band53
Figure 3.2:	Energy levels in Si as a Function of interatomic
	spacing. The core levels (n=1, 2) in Si are
	completely filled with electrons. At the actual
	atomic spacing of the crystal the 2N electrons in
	the 3s subshell and the 2N electrons in the 3p
	subshell undergo sp ³ hybridization, and all end up
	in the lower 4N states (valence band), while the
	higher-lying 4N states (conduction band) are empty
	separated by a band gap54
	separated by a band gap
Figure 3.3:	Typical Band Structure at 0 K55
Figure 3.4:	Direct and indirect electron transitions in
	semiconductors: (a) direct transition with
	accompanying photon emission; (b) indirect
	transition via a defect level
	WHILITED IT THE W GOLDON TO TOIL
Figure 3.5:	An exciton is a bound electron-hole pair, usually
	free to move together through the crystal58

Figure 3.6:	Energy levels of an exciton created in a direct
	process. Optical transitions from the top of the
	valence band are shown by the arrows; the longest
	arrow corresponds to the energy gap. E_{ex} is the
	binding energy of the exciton, refered to a free
	electron and free hole. The lowest frequency
	absorption line of the crystal at absolute zero is not
	E_{ex} but is E_g - E_{ex}
	_ex = 000 = 2 _g _ex = 000 = 0
Figure 3.7:	Effect of an exciton level on the optical absorption
	of a semiconductor for photons of energy near the
	band gap E_g in gallium arsenide at 21 K. The
	energy gap and the exciton binding energy are
	deduced from the shape of the absorption curve: the
	gap E_g is 1.521 eV and the exciton binding energy
	is 3.4 meV 60
Figure 3.8:	Different structures of semiconductor material with
	their associated function of density of states $D(E)$
	depending on number of degrees of freedom for
	electron motion and corresponding dimensions in
	which electron motion is confined64
Figure 3.9:	SEM image of a silicon quantum-dot single-
	electron-transistor before removal of SiO2. Inset

shows a blowup of the center region after removal

of SiO2. The device contains a big island

	connected to leads via small dots present in the
	nano-constrictions (indicated by red arrows)66
Figure 3.10:	a) AFM image of InAs quantum dots grown or
	InGaAsP surface without subsequent overgrowth
	b) STEM image of the same quantum dots after
	subsequent overgrowth of InGaAsP layer showing
	the dots buried in a semiconductor matrix68
Figure 3.11:	HRTEM (a) and TEM (b) of PbSe nanocrystals
	synthesized by solvothermal method69
Figure 3.12:	Absorption (plain lines) and corresponding emission spectra (dotted lines) of colloidal CdSe
	quantum dots of different sizes as indicated by
	circles above. Inset photographs of solutions under
	room light illumination (above image) and under
	UV light illumination from below (below image)
	showing tunability of emission from blue to orange
	with increasing size74
Figure 3.13:	Alignment of the conduction and valence band
	edges for two types of heterostructures; Type I (a)
	and Type II (b) 76
Figure 3.14:	The bulk band offsets of common semiconductor
	materials which can be incorporated in nano-
	heterostructures