

Port Site Complications Following Laparoscopic Cholecystectomy

Thesis

Submitted For Fulfillment of M.Sc. Degree In General Surgery

By

Alaa Abd El-Malik

(M.B.B.Ch)

Under Supervision Of

Mustafa Abd El-Hameed Suliman

Professor of General Surgery

Cairo University

Tarek Ossama Hegazy

Ass. Professor of General Surgery

Cairo University

Faculty of Medicine
Cairo University
2015

Acknowledgment

I would like to express my endless gratefulness to gracious *God* for helping me to achieve this work.

It was a great honor to accomplish this research under the supervision of *Prof. Dr. Mustafa Abd El-Hameed Suliman*, Professor of General Surgery, Faculty of Medicine, Cairo University, for his guidance, support, valuable directions and continuous encouragement.

I wish to express my greatest appreciation for *Prof. Dr. Tarek Ossama Hegazy*, Professor of General Surgery, Faculty of Medicine, Cairo University, for his great support and kind and careful assistance and valuable knowledge during this work.

Finally, I would like to thank all my professors, my seniors, my colleagues and my family especially my wife for helping me directly and indirectly to carry on this research.

Contents

Acknowledgment	I
Contents	II
List of Figures	IV
List of Tables	VI
List of Abbreviations	VII
INTRODUCTION	1
AIM OF THE WORK	4
ANATOMY	6
Abdominal Wall Regions	7
Abdominal Wall Layers	8
Blood Supply	14
Venous Drainage	15
Nerve Supply	16
Lymphatic Drainage	17
Musculature of the Anterior Abdominal Wall	18
Peritoneum	26
Aponeurotic sheets of the anterior abdominal wall	28
CONVENTIONAL LAPAROSCOPIC CHOLECYSTCTOMY	34
Operative Technique	35
1. Prepping and draping	35
2. Placement of ports and instruments	36
3. Exposure and dissection	40
4. Clipping and division of cystic structures	42
5. Mobilization and removal of gallbladder	43
6. Port removal and closure	45
7. Postprocedural care	46
REVIEW OF THE LITERATURES	47
Introduction:	
Port site infection (PSI):	
Port site bleeding:	
Omentum-related complications:	
*	54

Miscellaneous Complications:	55
PATIENTS AND METHODS	57
Data Collection	58
Data Analysis	60
RESULTS	61
Variables in the study	62
Statistical techniques	63
Demographic details	63
Clinical data:	65
Port-site Criteria	68
Time Of Surgery	69
Hypotheses of the study	70
DISCUSSION	71
CONCLUSION	81
SUMMARY	83
REFERENES	86
ARABIC SUMMARY	92

List of Figures

Figure 1	Various regions of the anterior abdominal wall	8
Figure 2	The contents of the umbilicus during fetal period	10
Figure 3	The two layers of the superficial fascia the abdominal wall	13
Figure 4	The diverse origin of the arterial supply and cutaneous innervation of the abdomen	15
Figure 5	Venous drainage of the abdominal wall	16
Figure 6	Course of the thoracoabdominal nerves	17
Figure 7	External oblique, internal oblique, and transversus muscles of the anterior abdominal wall	19
Figure 8	Direction of the fibers of the external and internal abdominal oblique muscle	20
Figure 9	Transverse abdominis muscle and aponeurosis	22
Figure 10	Anterior view of the rectus abdominis muscle	23
Figure 11-A	Rectus sheath in anterior view	29
Figure 11-B	Cross-section of the anterior abdominal wall in the midline.	33
Figure 12	Two different positions in the theatre. (French) on the right, (American) on the left. Quoted from	36
Figure 13	Laparoscopic cholecystectomy. Advancement of 11-mm trocar under direct vision.	37
Figure 14	Laparoscopic cholecystectomy. Visualization of gallbladder after placement of table in reverse Trendelenburg position.	38
Figure 15	Laparoscopic cholecystectomy. Placement of two lateral 5-mm ports under direct vision.	39

Figure 16	Laparoscopic cholecystectomy. External view after port placement	39
Figure 17	Laparoscopic cholecystectomy. Lateral grasper is used to retract	40
Figure 18	Fundus cephalad and retract adhesions. Laparoscopic cholecystectomy. Medial grasper is applied to infundibulum.	40
Figure 19	Laparoscopic cholecystectomy. Critical view, with only cystic duct and cystic artery seen entering gallbladder	41
Figure 20	Laparoscopic cholecystectomy. Use of L-hook electrocautery to score anterior peritoneum.	41
Figure 21	Placement of clip at lower aspect of cystic artery.	42
Figure 22	Placement of superior clips on cystic artery.	42
Figure 23	Use of hook to develop plane in areolar tissue between gallbladder and liver.	43
Figure 24	Cauterization of any bleeding in gallbladder bed before complete division of gallbladder.	44
Figure 25	Continued dissection of critical structures	45
Figure 26	Removal of ports under direct vision.	45
Figure 27	Bleeding from a trocar site. Cantilevering the sheath into each quadrant to find a position that causes the bleeding to stop	52
Figure 28	Port site metastasis at the umbilical port after surgery	55
Figure 29	Pie graph, gender distribution in our study	64
Figure 30	Bar graph represents the distribution of cases	66
Figure 31	Categories of BMI as stated in our study	67

List of Tables

Table 1	Gender distribution in our study.	63
Table 2	Age frequency in our study	64
Table 3	Age below and above 35 year	65
Table 4	Indications of Laparoscopic Cholecystectomy	65
Table 5	Past medical history in our study	66
Table 6	Complications rate and relation with port size	68
Table 7	Time of Surgery	69
Table 8	Statistics Time of Surgery	69

List of Abbreviations

cm	Centimeter
mm	Millimeter
вмі	Body Mass Index
ASA score	American Society of Anesthesiologists score
SD	Standard Deviation
PSC	Port Site complications
PSI	Port Site Infection

Introduction

INTRODUCTION

Laparoscopic surgery, also known as minimal access surgery, is an approach to surgery whereby operations are performed with specialized instruments designed to be inserted through small incisions (Assalia et al. 2006).

There is no doubt that laparoscopic surgery has had marvellous positive impression on patients and the healthcare system worldwide. Patients prefer to have less pain, less morbidity and return to their daily activities as soon as possible (**Khan & Oonwala 2007**).

Therefore, the number of laparoscopic procedures done each year continues to rise substantially. There are over 2 million laparoscopic cases performed annually in the U.S (Weiss et al. 2014).

Despite the many technical advances in laparoscopic surgery equipment and the extensive experience of many surgeons, there is still a level of mortality and morbidity year from such an operation (Assalia et al. 2006).

The complications associated with port site vary in severity and in the time of presentation. It is well established that most of them are infections with skin flora bacteria. Other complications are haemorrhage, hernias and metastases. The latter three types are still much less than the former (**De et al. 2012**).

Our article did not discuss major complications of laparoscopic surgery like visceral or vascular injuries; our article discusses port site complications which represents less than 4% of the total overall complications.

Aim of the Work

6916

Aim of the Work

The aim of our study is to investigate the incidence, causes and natural history of port site complications during laparoscopic cholecystectomy along two years retrospectively in Police Hospital-Nasr City.

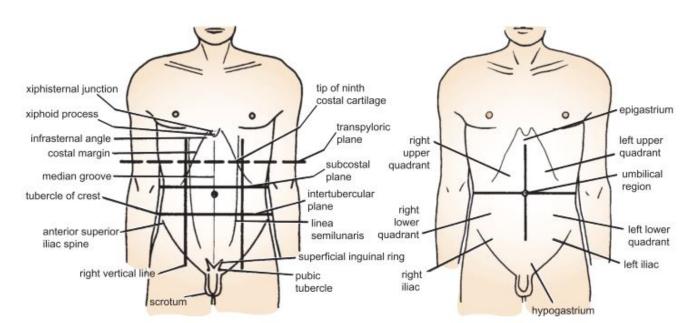
Anatomy

ANATOMY

Abdominal Wall Regions

In order to accurately describe the locations of visible abnormalities, masses, and pain in a typical work the

Port-Site Complications in Laparoscopic Cholecystectom


anterolateral abdomen is divided into nine regions by four imaginary planes, Two verticals (mid-clavicular/mid-inguinal) and two horizontal (transpyloric/intertubercular) planes (Figure 1).

The transpyloric plane corresponds to the midpoint between the umbilicus and xiphoid process, crossing the pylorus of the stomach at the lower border of the first lumbar vertebra. The subcostal plane that passes across the costal margins and the upper border of the third lumbar vertebra may be used instead of the transpyloric plane. The lower horizontal plane, designated as the intertubercular line, traverses the anterior abdomen at the level of fifth lumbar vertebra, and connects the iliac tubercles on both sides (Snell 2012).

A second lower horizontal plane, the interspinous plane, may also be used, interconnecting the anterior superior iliac spines on both sides and running across the sacral promontory (Snell 2012).

Of the nine areas, the centrally placed zone is the umbilical region (Figure 1). This region surrounds the umbilicus and usually corresponds to the location of the jejunum, transverse part of the duodenum, terminal ileum, transverse colon, ureter and the greater curvature of the stomach (Snell 2012).

The epigastrium is the upper middle part of the anterior abdomen between the umbilicus below and the costal arches and the xiphoid

