

NUMERICAL STUDY ON THE BEHAVIOR OF CFRP-STRENGTHENED COLD-FORMED STEEL BEAMS

By

Essam Gamal El-Din Soliman Mohammed Eissa

A Thesis Submitted to the
Faculty of Engineering, Cairo University
In Partial Fulfillment of the
Requirement for the Degree of
MASTER OF SCIENCE

In

STRUCTURAL ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT **2016**

NUMERICAL STUDY ON THE BEHAVIOR OF CFRP-STRENGTHENED COLD-FORMED STEEL BEAMS

By Essam Gamal El-Din Soliman Mohammed Eissa

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

> In STRUCTURAL ENGINEERING

Under the Supervision of

Prof. Dr. Ahmed F. Hassan Assoc. Prof. Dr. Mohamed Hassanien Professor of Steel Structure and Bridges **Associate Professor** Structural Department

Structural Department Faculty of Engineering, Cairo University Faculty of Engineering, Cairo University

> FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

NUMERICAL STUDY ON THE BEHAVIOR OF CFRP-STRENGTHENED COLD-FORMED STEEL BEAMS

By Essam Gamal El-Din Soliman Mohammed Eissa

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in STRUCTURAL ENGINEERING

Approved by the Examining Committee:

Prof. Dr. Ahmed Farouk Hassan, (Thesis main advisor)

Assoc. Prof. Dr. Mohamed Hassanien Serror, (Member)

Prof. Dr. Ashraf Mahmoud Gamal El Din Osman, (Internal examiner)

Prof. Dr. Mohammed Abdel Gawad Zaki, (External examiner) Prof. Dr. at the National Research Center

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2016

Engineer's Name: Essam Gamal El Din Soliman

Date of Birth: 26/08/1989 **Nationality:** Egyptian

E-mail: Essam-Gamal@hotmail.com

Phone: +201221401440

Address: 11-Eltadamon street, El-Made, Cairo

Registration Date: 01/10/2012 **Awarding Date:** / / 2016

Degree: Master of Science **Department:** Structure Engineering

Supervisors: Prof. Ahmed Farouk Hassan

Assoc. Prof. Mohamed Hassanien

Examiners: Porf. Ahmed F. Hassan

Assoc. Prof. Mohamed Hassanien

Prof. Ashraf M. Gamal El Din Osman Prof. Mohammed Abdelgawad Zaki Professor at the National Research Center (Thesis main advisor)

(Member)

(Internal examiner) (External examiner)

Title of Thesis:

NUMERICAL STUDY ON THE BEHAVIOR OF CFRP-STRENGTHENED COLD-FORMED STEEL BEAMS

Key Words:

Cold-formed steel; Moment resisting frame; Monotonic behavior; fiber reinforced polymer; Carbon fiber reinforced polymer strengthening.

Summary:

The thesis presents an analytical investigation of the cold-formed steel in the through plate moment connection with and without CFRP-strengthening. The cold-formed steel beams are strengthened with both CFRP plates and sheets to enhance the behavior and increase the capacity of the cold-formed sections. Three dimensional non-linear finite element analyses have been performed for cold-formed steel beam-to-column through plate moment connections under monotonic loading. Several parameters have been examined: cold-formed steel profile slenderness, strengthening with different CFRP plate configurations, strengthening with different CFRP sheet, the number of layers of the CFRP sheet. The effect of CFRP-strengthening has presented by plotting the relation between the normalized (M/Mp) moment against the rotation $angle(\Theta)$ for the cold-formed steel sections with and without strengthening.

Acknowledgements

The author is honored to obtain his M.Sc. degree from Cairo University under distinguished supervisors. He is deeply indebted to **Prof. Ahmed Farouk** for his support, guidance, encouragement and valuable discussion. He also grateful for **Assoc. Prof. Mohamed Hassanien** for his encouragement, guidance, valuable discussion, review this work, and his great effort to accomplish the thesis objectives.

The author would like to thank his mother, father and his pretty kind aunt for their continuous support. Finally, the author also deeply thanked his passed away teacher who always encouraged him to learn and continue learning up to leave this world. The author would not have achieved this work without their help.

Table of Contents

Acknow	vled	gments	.ii
List of	Tabl	es	vi
List of	Figu	res	vii
Abstrac	t	X	vi
CHAP	ΓER	1: Introduction	1
1.1	Gei	neral	1
1.2	Pro	blem statement	2
1.3	Obj	ective of the research.	2
1.4	Sco	ppe of the research	2
1.5	Org	ganization of the thesis	3
CHAP	ΓER	2: LITERATURE REVIEW	4
2.1	Gei	neral	4
2.2	Me	thods of Analysis	4
2.2	2.1	Effective Width Method.	4
2.2	2.2	Direct Design Method	5
2.3	Des	sign Codes	5
2.3	3.1	ECP 205 ASD	5
2.3	3.2	ECP 205 LRFD	7
2.3	3.3	AISI-S100-07	7
2.3	3.4	Eurocode-3 part 1-1	8
2.3	5.5	AISC Seismic Provisions	8
2.3	6.6	Eurocode-3 part 1-8	8
2.3	5.7	ECP 208	10
2.4	Res	earch Works	12
2.4	.1	Cold-formed steel	.12
2.4	2	Cold-formed steel connections.	.14
2.4	3	Fiber Reinforced Polymer (FRP) Strengthening.	15
CHAP	ΓER	3: Numerical Model and Verification	18
3.1	Gei	neral	18
3.2	Nu	merical model	18

3.3 Modeling Procedure	18
3.3.1 Materials	19
3.3.1.1 Steel	19
3.3.1.2 Carbon Fiber Reinforced Polymer and Adhesion materia	al20
3.3.2 Element types.	21
3.3.2.1 Steel	21
3.3.2.2 Carbon Fiber Reinforced Polymer and Adhesion materia	al22
3.3.3 Model Geometry	22
3.3.3.1 Steel beams and connection	21
3.3.3.2 Fiber Reinforced Polymer	24
3.3.4 Boundary conditions	30
3.4 Evaluation of parameters	30
3.5 Failure modes	32
3.6 Numerical model verification.	33
CHAPTER 4: Results and Discussion	36
4.1 General	36
4.2 Cold-formed steel beams without CFRP-stregnthening	36
4.3 Effect of Carbon fiber reinforced ploymer (CFRP) stregnthening	ng47
4.3.1 Carbon fiber reinfpreed polymer plates	47
4.3.3.1 Sika CarboDur S1214 (Laminate plate)	47
4.3.2 Carbon fiber reinfpreed polymer sheets	68
4.3.2.1 SikaWarp-230C (woven sheet) one layer	68
4.3.2.2 SikaWarp-230C (woven sheet) two layers	89
4.3.2.3 SikaWarp-300C (woven sheet) one layer	110
4.3.2.4 SikaWarp-301C (woven sheet) one layer	115
4.3.2 Comparison between the different types of CFRPs	121
CHAPTER 5: Summary, Conclusions and Recommendations	130
5.1 Summary	130
5.2 Conclusion	130
5.3 Recommendation for future work	131

References		•••••			 	•••••	132
Appendix A:	FEM Ar	nalysis	Results	•••••	 •••••	•••••	135
Appendix B: Sheets				•			

List of Tables

Table 2-1: Guide for the selection of FRP systems according to scope of application.[8]	11
Table 3-1:ECP 205 ASD steel 37 properties.	19
Table 3-2: CFRP Material properties as given by the manufacture data	20
Table 3-3: Adhesion Material properties as given as given by the manufacture data	20
Table 3-4: Profile parameters for the adopted cold-formed beams	23
Table 3-5: Through plate dimensions according to the cold-formed beams dimensions	24

List of Figures

Figure 2-1: Maximum allowable dw/tw ratio for flexure cold-formed elements [2]6
Figure 2-2: Maximum allowable b/t and C/t ratio for compression cold -formed elements. [2].6
Figure 2-3: CFS channel built up section connectors as per ECP 205
Figure 2-4: Classification of joint in Euro code-3 part 1-8 [7]9
Figure 3-1: Three dimensional finite element model
Figure 3-2: Stress strain curve for steel material
Figure 3-3: ANSYS 11.0 shell element "shell181" representations [1]
Figure 3-4: ANSYS 11.0 rigid beam element MPC184 representations [1]21
Figure 3-5: ANSYS 11.0 solid element "SOLID185" representations [1]
Figure 3-6: Double cold-formed back to back lipped channel beam23
Figure 3-7: Through plate dimensions
Figure 3-8: CFRP and adhesion material length and position in the different configuration29
Figure 3-9: Monotonic load supsteps number and he adopted rotation angle30
Figure 3-10: Bending moment diagram and the sections dimension's sketch31
Figure 3-11: The rotational angle for the adopted cantilever beam32
Figure 3-12: Failure modes of the CFRP strengthened steel structures32
Figure 3-13: Finite element model as per Zahurul's model [25]
Figure 3-14: The generated verification model, Von-Misses stresses and the failure mode34
Figure 3-15: Numerical modeling verification results against Zahurul's model experimental
results35
Figure 4-1: Normalized moment (M/Mp) against rotation angle (Θ) for Section 120x65x15/t.37
Figure 4-2: Normalized moment (M/Mp) against rotation angle (Θ) for Section 150x65x15/t.37
Figure 4-3: Normalized moment (M/Mp) against rotation angle (Θ) for Section 200x85x15/t.38
Figure 4-4: Normalized moment (M/Mp) against rotation angle (Θ) for Section 250x85x15/t.38
Figure 4-5: Normalized moment (M/Mp) against rotation angle (Θ) for Section
300x100x20/t39
Figure 4-6: Normalized moment (M/Mp) against rotation angle (Θ) for Section
350x100x20/t39
Figure 4-7: Normalized moment (M/Mp) against rotation angle (Θ) for Section
400x100x25/t
Figure 4-8: Normalized moment (M/Mp) against web slenderness ratio (H/t)41
Figure 4-9: Normalized moment (M/Mp) against flanges ratio (B/t)
Figure 4-10: Nodal displacement and deformed shape for section 120x65x15/3
Figure 4-11: Von-Misses stress distribution for section 120x65x15/3
Figure 4-15: Stress concentration and maximum stress position for section 120x65x15/344
Figure 4-16: Von-Misses stress distribution in the through plate for section 120x65x15/344
Figure 4-17: Nodal displacement and deformed shape for section $400x100x25/1.545$
Figure 4-18: Von-Misses stress distribution for section 400x100x25/1.545
Figure 4-16: Stress concentration and the buckling failure for $400x100x25/1.546$
Figure 4-17: Von-Misses stress distribution in the through plate for section
400x100x25/1.5

Figure 4-18: Normalized moment (M/Mp) against (Θ) for Section 120x65x15/1.5 with and
without strengthening using different FRP configurations of Sika CarboDur S121448
Figure 4-19: Normalized moment (M/Mp) against (Θ) for Section 120x65x15/3 with and
without strengthening using different FRP configurations of Sika CarboDur S1214
Figure 4-20: Normalized moment (M/Mp) against (Θ) for Section 150x65x15/1.5 with and
without strengthening using different FRP configurations of Sika CarboDur S121449
Figure 4-21: Normalized moment (M/Mp) against (Θ) for Section 150x65x15/3 with and
without strengthening using different FRP configurations of Sika CarboDur S1214
Figure 4-22: Normalized moment (M/Mp) against (Θ) for Section 200x85x20/3 with and
without strengthening using different FRP configurations of Sika CarboDur S121450
Figure 4-23: Normalized moment (M/Mp) against (Θ) for Section 250x85x20/3 with and
without strengthening using different FRP configurations of Sika CarboDur S121450
Figure 4-24: Normalized moment (M/Mp) against (Θ) for Section 300x100x20/1.5 with and
without strengthening using different FRP configurations of Sika CarboDur S121451
Figure 4-25: Normalized moment (M/Mp) against (Θ) for Section 300x100x20/3 with and
without strengthening using different FRP configurations of Sika CarboDur S121451
Figure 4-26: Normalized moment (M/Mp) against (Θ) for Section 350x100x20/3 with and
without strengthening using different FRP configurations of Sika CarboDur S121452
Figure 4-27: Normalized moment (M/Mp) against (Θ) for Section 400x100x25/3 with and
without strengthening using different FRP configurations of Sika CarboDur S121453
Figure 4-28: The Maximum attained moment for beam 120x65x15/t with and without
strengthening using different FRP configurations of Sika CarboDur S121454
Figure 4-29: The Maximum attained moment for beam 150x65x15/t with and without
strengthening using different FRP configurations of Sika CarboDur S121455
Figure 4-30: The Maximum attained moment for beam 200x85x15/t with and without
strengthening using different FRP configurations of Sika CarboDur S121456
Figure 4-31: The Maximum attained moment for beam 250x85x15/t with and without
strengthening using different FRP configurations of Sika CarboDur S121457
Figure 4-32: The Maximum attained moment for beam 300x100x20/t with and without
strengthening using different FRP configurations of Sika CarboDur S121458
Figure 4-33: The Maximum attained moment for beam 350x100x20/t with and without
strengthening using different FRP configurations of Sika CarboDur S121459
Figure 4-34: The Maximum attained moment for beam 400x100x25/t with and without
strengthening using different FRP configurations of Sika CarboDur S121460
Figure 4-35: Section 400x100x25/3 strengthened with Sika CarboDur S1214
CONFIG-1-1-A
Figure 4-36: Nodal displacement and deformed shape for section 400x100x25/3 strengthened
with Sika CarboDur S1214 CONFIG-1-1-A62
Figure 4-37: web and flange buckling for section 400x100x25/3 strengthened with Sika
CarboDur S1214 CONFIG-1-1-A
Figure 4-38: Von-Misses stress distribution for section 400x100x25/3 strengthened with Sika
CarboDur S1214 CONFIG-1-1-A
Figure 4-39: Von-Misses stress distribution in the buckling position for section 400x100x25/3
strengthened with Sika Carbo Dur \$1214 CONFIG-1-1-A

strengthening using different FRP configurations of SikaWarp-230C (one layer)79
Figure 4-63: The Maximum attained moment for beam 350x100x20/t with and without
strengthening using different FRP configurations of SikaWarp-230C (one layer)80
Figure 4-64: The Maximum attained moment for beam 400x100x25/t with and without
strengthening using different FRP configurations of SikaWarp-230C (one layer)81
Figure 4-65: Section 400x100x25/2.5 strengthened with SikaWarp-230C (one layer)
CONFIG-1-1-B
Figure 4-66: web and flange buckling for section 400x100x25/2.5 strengthened with
SikaWarp-230C (one layer) CONFIG-1-1-B83
Figure 4-67: Von-Misses stress distribution for section 400x100x25/2.5 strengthened with
SikaWarp-230C (one layer) CONFIG-1-1-B83
Figure 4-68: Von-Misses stress distribution in the buckling position for section
400x100x25/2.5 strengthened with SikaWarp-230C (one layer) CONFIG-1-1-B84
Figure 4-69: Von-Misses stress distribution in the adhesion material for section
400x100x25/2.5 strengthened with SikaWarp-230C (one layer) CONFIG-1-1-B84
Figure 4-70: Von-Misses stress distribution in the CFRP for section 400x100x25/2.5
strengthened with SikaWarp-230C (one layer) CONFIG-1-1-B
Figure 4-71: Section 350x100x20/3 strengthened with SikaWarp-230C (one layer)
CONFIG-2-3-B85
Figure 4-72: Deformed shape for section 350x100x20/3 strengthened with SikaWarp-230C
(one layer) CONFIG-2-3-B
Figure 4-73: web and flange buckling for section 350x100x20/3 strengthened with SikaWarp-
230C (one layer) CONFIG-2-3-B
Figure 4-74: Von-Misses stress distribution for section 350x100x20/3 strengthened with
SikaWarp-230C (one layer) CONFIG-2-3-B
Figure 4-75: Von-Misses stress distribution in the buckling position for section 350x100x20/3
strengthened with SikaWarp-230C (one layer) CONFIG-2-3-B
Figure 4-76: Von-Misses stress distribution in the adhesion material for section 350x100x20/3
strengthened with SikaWarp-230C (one layer) CONFIG-2-3-B
Figure 4-77: Von-Misses stress distribution in the CFRP for section $350x100x20/3$
Figure 4-77: Von-Misses stress distribution in the CFRP for section 350x100x20/3 strengthened with SikaWarp-230C (one layer) CONFIG-2-3-B
strengthened with SikaWarp-230C (one layer) CONFIG-2-3-B
strengthened with SikaWarp-230C (one layer) CONFIG-2-3-B
strengthened with SikaWarp-230C (one layer) CONFIG-2-3-B
strengthened with SikaWarp-230C (one layer) CONFIG-2-3-B
strengthened with SikaWarp-230C (one layer) CONFIG-2-3-B
strengthened with SikaWarp-230C (one layer) CONFIG-2-3-B
strengthened with SikaWarp-230C (one layer) CONFIG-2-3-B
strengthened with SikaWarp-230C (one layer) CONFIG-2-3-B
strengthened with SikaWarp-230C (one layer) CONFIG-2-3-B
Strengthened with SikaWarp-230C (one layer) CONFIG-2-3-B
strengthened with SikaWarp-230C (one layer) CONFIG-2-3-B

Figure 4-84: Normalized moment (M/Mp) against (Θ) for Section 350x100x20/2.5 with and
without strengthening using different FRP configurations of SikaWarp-230C (two layers)93
Figure 4-85: Normalized moment (M/Mp) against (Θ) for Section 400x100x25/3 with and
without strengthening using different FRP configurations of SikaWarp-230C (two layers)93
Figure 4-86: The Maximum attained moment for beam 120x65x15/t with and without
strengthening using different FRP configurations of SikaWarp-230C (two layers)95
Figure 4-87: The Maximum attained moment for beam 150x65x15/t with and without
strengthening using different FRP configurations of SikaWarp-230C (two layers)96
Figure 4-88: The Maximum attained moment for beam 200x85x20/t with and without
strengthening using different FRP configurations of SikaWarp-230C (two layers)97
Figure 4-89: The Maximum attained moment for beam 250x85x20/t with and without
strengthening using different FRP configurations of SikaWarp-230C (two layers)98
Figure 4-90: The Maximum attained moment for beam 300x100x20/t with and without
strengthening using different FRP configurations of SikaWarp-230C (two layers)
Figure 4-91: The Maximum attained moment for beam 350x100x20/t with and without
strengthening using different FRP configurations of SikaWarp-230C (two layers)100
Figure 4-92: The Maximum attained moment for beam 400x100x25/t with and without
strengthening using different FRP configurations of SikaWarp-230C (two layers)101
Figure 4-93: Section 400x100x25/3 strengthened with SikaWarp-230C (two layers)
CONFIG-1-3-C
Figure 4-94: Nodal displacement and deformed shape for section 400x100x25/3 strengthened
with SikaWarp-230C (two layers) CONFIG-1-3-C
Figure 4-95: web and flange buckling shape for section 400x100x25/3 strengthened with
SikaWarp-230C (two layers CONFIG-1-3-C
Figure 4-96: Von-Misses stress distribution for section 400x100x25/3 strengthened with
SikaWarp-230C (two layers) CONFIG-1-3-C
Figure 4-97: Von-Misses stress distribution in the buckling position for section $400 \times 100 \times 25/3$
strengthened with SikaWarp-230C (two layers) CONFIG-1-3-C
Figure 4-98: Von-Misses stress distribution in the adhesion material for section 400x100x25/3
strengthened with SikaWarp-230C (two layers) CONFIG-1-3-C
Figure 4-99: Von-Misses stress distribution in the CFRP for section 400x100x25/3
strengthened with SikaWarp-230C (two layers) CONFIG-1-3-C
Figure 4-100: Section 200x85x20/2 strengthened with SikaWarp-230C (two layers)
CONFIG-2-3-C
Figure 4-101:Nodal displacement and deformed shape for section 200x85x20/2 strengthened
with SikaWarp-230C (two layers) CONFIG-2-3-C107
Figure 4-102: Von-Misses stress distribution for section 200x85x20/2 strengthened with
SikaWarp-230C (two layers) CONFIG-2-3-C
Figure 4-103: Von-Misses stress distribution in the buckling position for section 200x85x20/2
strengthened with SikaWarp-230C (two layers) CONFIG-2-3-C
Figure 4-104: Von-Misses stress distribution in the adhesion material for section 200x85x20/2
strengthened with SikaWarp-230C (two layers) CONFIG-2-3-C
Figure 4-105: Von-Misses stress distribution in the CFRP for section 200x85x20/2
strengthened with SikaWarp-230C (two layers) CONFIG-2-3-C

Figure 4-106: Normalized moment (M/Mp) against (Θ) for Section 300x100x20/1.5 with and without strengthening using different FRP configurations of SikaWarp-300C (one layer)...110 Figure 4-107: Normalized moment (M/Mp) against (Θ) for Section 300x100x20/3 with and without strengthening using different FRP configurations of SikaWarp-300C (one layer)...111 Figure 4-108: Normalized moment (M/Mp) against (Θ) for Section 350x100x20/1.5 with and without strengthening using different FRP configurations of SikaWarp-300C (one layer)...111 Figure 4-109: Normalized moment (M/Mp) against (Θ) for Section 350x100x20/3 with and without strengthening using different FRP configurations of SikaWarp-300C (one layer)...112 Figure 4-110: Normalized moment (M/Mp) against (Θ) for Section 400x100x25/1.5 with and without strengthening using different FRP configurations of SikaWarp-300C (one layer)...112 Figure 4-111: Normalized moment (M/Mp) against (Θ) for Section 400x100x25/3 with and without strengthening using different FRP configurations of SikaWarp-300C (one layer)...113 Figure 4-112: The Maximum attained moment for beam 300x100x20/t with and without strengthening using different FRP configurations of SikaWarp-300C (one layer)......114 Figure 4-113: The Maximum attained moment for beam 350x100x20/t with and without strengthening using different FRP configurations of SikaWarp-300C (one layer)......114 Figure 4-114: The Maximum attained moment for beam 400x100x25/t with and without strengthening using different FRP configurations of SikaWarp-300C (one layer).....115 Figure 4-115: Normalized moment (M/Mp) against (Θ) for Section 300x100x20/1.5 with and without strengthening using different FRP configurations of SikaWarp-301C (one layer)...116 Figure 4-116: Normalized moment (M/Mp) against (Θ) for Section 300x100x20/3 with and without strengthening using different FRP configurations of SikaWarp-301C (one layer)...117 Figure 4-117: Normalized moment (M/Mp) against (Θ) for Section 350x100x20/1.5 with and without strengthening using different FRP configurations of SikaWarp-301C (one layer)...117 Figure 4-118: Normalized moment (M/Mp) against (Θ) for Section 350x100x20/3 with and without strengthening using different FRP configurations of SikaWarp-301C (one layer)...118 Figure 4-119: Normalized moment (M/Mp) against (Θ) for Section 400x100x25/1.5 with and without strengthening using different FRP configurations of SikaWarp-301C (one layer)...118 Figure 4-120: Normalized moment (M/Mp) against (Θ) for Section 400x100x25/3 with and without strengthening using different FRP configurations of SikaWarp-301C (one layer)...119 Figure 4-121: The Maximum attained moment for beam 300x100x20/t with and without Figure 4-122: The Maximum attained moment for beam 350x100x20/t with and without strengthening using different FRP configurations of SikaWarp-301C (one layer)......120 Figure 4-123: The Maximum attained moment for beam 400x100x25/t with and without strengthening using different FRP configurations of SikaWarp-301C (one layer)......121 Figure 4-124: Normalized moment (M/Mp) against (Θ) for Section 300x100x20/1.5 with and Figure 4-125: Normalized moment (M/Mp) against (Θ) for Section 300x100x20/1.5 with and Figure 4-126: Normalized moment (M/Mp) against (Θ) for Section 350x100x20/3 with and Figure 4-127: Normalized moment (M/Mp) against (Θ) for Section 350x100x20/3 with and without strengthening using different FRP types of CONFIG-2-1123