Ultrasound biomicroscopy versus anterior segment OCT in diagnosing various anterior segment diseases

Essay

Submitted for Fulfillment Master Degree in Ophthalmology

By

Michael Onsy Ishak M.B., B.Ch.

Supervised by

Prof. Dr. Hala Mohamed Elcheweikh

Professor of ophthalmology
Faculty of Medicine
Cairo University

Prof. Dr. Hala Saad El-Din Ahmed

Professor of ophthalmology
Faculty of Medicine
Cairo University

Dr. Rasha Mounir El Tanamly

Lecturer of ophthalmology
Faculty of Medicine
Cairo University
Faculty of Medicine
Cairo University
2008

Abstract

High frequency, high-resolution ultrasound biomicroscopy (UBM) provides visualization of anterior segment anatomy previously unavailable in vivo. UBM is based on 50- to 100- megahertz (MHz) transducers incorporated into a B-mode clinical scanner. Lower frequency transducers (50 MHz) are used where depth of penetration is important. Higher frequency transducers (80-100 MHz) are used to increase resolution of more superficial structures.

Optical Coherence Tomography (OCT) is a new non-contact and noninvasive imaging technique that can produce high resolution cross-sectional images of the human retina. Anterior segment imaging using OCT was first demonstrated in 1994 using light with a wavelength of 830 nm. Recently, transcleral OCT with 1310 nm wavelength light had been described in non contact biometry, anterior chamber angle assessment, identification and monitoring of intraocular masses and tumors, and elucidation of abnormalities of the cornea, iris, and crystalline lens.

Key Words:

Ultrasound Biomicroscopy - Ocular Coherence Tomography - Intraocular lenses.

Acknowledgement

First many thanks to God who helped me in achieving this work and to whom I relate any success in my life.

I want to thank my parents for their continous encouragement, advise and support.

I would like to thank my brother for his voluble advise in this work.

I want to thank my wife for her encouragement and for her help in many steps of this work.

Finally, I would like to express my great gratitude to Prof. Dr. Hala Mohamed Elcheweikh for her great help, advice and support. I would like to thank deeply Prof. Dr. Hala Saad-Eldin Ahmed for her care, great encouragement, and supervision through every step in this work. I would like to thank Dr. Rasha Mounir for supervising all the chapters of the work.

List of abbereviations:

UBM: Ultrasound Biomicroscopy.

OCT: Ocular Coherence Tomography.

MHz: megaherts

W/sq cm: Watt per square centimeter.

LTK: Laser thermokeratoplasty.

CCT: Central corneal thickness.

KI: Keratoconus index.

TCT: Thinnest corneal thickness.

CAS-OCT: Corneal and anterior segment OCT.

IOLs: Intraocular lenses.

AS-OCT: Anterior segment optical coherence tomography.

AC-OCT: Anterior chamber optical coherence tomography.

AP: anteroposterior.

AC: anterior chamber.

SD: Standard deviation.

ACD: Anterior chamber depth.

AC IOLs: Anterior chamber intraocular lenses.

PC IOLs: Posterior chamber intraocular lenses.

ICL: Implantable contact lens.

LASIK: Laser in situ keratomileusis.

PRK: photorefractive keratectomy.

BFS: best-fit spheres.

US: Ultrasound.

UCVA: Uncorrected visual acuity.

CCIs: clear corneal incisions.

PCO: Posterior capsular opacification.

LEC: lens epithelial cells.

PACG; Primary angle-closure glaucoma.

LPI: Laser peripheral iridotomy.

ACA: Anterior chamber angle

AOD: Angle opening distance.

ARA: Angle recess area.

TISA: Trabeculo-iris space area.

PDS: Pigment dispersion syndrome.

IOP: Intraocular pressure.

PAS: peripheral anterior synechia.

PKP: penetrating keratoplasty.

PBK: pseudophakic bullous keratopathy.

CED: corneal endothelium distance.

ICA: Iridocorneal angle.

OP-OCT: Ocular coherence tomograph coupled with an operating microscope.

SL-OCT: Slit-lamp ocular coherence tomography

10FBs: intraocular foreign bodies

List of figures:

Figures

Page

Figure (1) Eye cups of different sizes5
Figure (2) Eye cup in place5
Figure (3) Examination through a water bath6
Figure(4) A high frequency transducer7
Figure (5) The commercial scanner of UBM
Figure (6) Three-dimensional scanner8
Figure(7) Probe orientation versus screen image9
Figure (8) Image measurement using Optical Coherence Tomography10
Figure(9) Low coherence interferometry versus normal coherence
Interferometery13
Figure(10) Fibre-optic interferometer OCT system14
Figure(11) Schematic diagram of a typical Optical Coherence Tomography
System for ophthalmic examination16
Figure(12) OCT instrument (Carl Zeis engineering, 2002)17
Fig.(13) Schematic diagram of the optical system for OCT imaging in
the anterior eye
Figure(14) Reflection of light and sound from the eye21
Figure (15) Nasal and temporal UBM and AS-OCT25
Figure (16) Normal cornea by UBM
Figure(17) Normal sclera by UBM

Figure(18) Ultrasound biomicroscopy showing corneoscleral junction27		
Figure (19) Normal iris by UBM		
Figure (20) Normal ciliary body by UBM		
Figure (21) Normal processes by UBM		
Figure (22) Normal corneal measurements by UBM30		
Figure (23) Normal Ciliary Body measurements by UBM31		
Figure (24) Normal AC by UBM		
Figure(25) Normal angle region by UBM		
Figure(26) Normal AC measures by UBM33		
Figure(27) Normal angle measurements by UBM33		
Figure (28) I rido-zonular distance by UBM		
Figure (29) Narrow field-of-view OCT image of a healthy anterior chamber		
angle		
Figure (30) Narrow field-of-view OCT image of a healthy cornea38		
Figure (31) Pachymetric measurement of a healthy human cornea in		
vivo39		
Figure (32) OCT image of an open chamber angle and corneoscleral		
region41		
Figure (33) Scaled OCT measurement of an open chamber angle41		
Figure (34) OCT-scanning of an open chamber angle from oblique		
Incident Angles42		
Figure (35) OCT of iris and lens in a healthy young patient in miosis43		
Figure (36) UBM showing granular dystrophy of the cornea		

Figure (37) UBM showing edema of the cornea
Figure (38) UBM showing Eximer laser46
Figure (39) Slit-lamp-adapted OCT allowed visualization of laser effects
in the cornea47
Figure (40) Hydrops oculi50
Figure (41) Optical coherence tomography corneal ring measurement
Scheme52
Figure (42) Horizontal optical coherence tomography section of the
Anterior segment54
Figure (43) UBM showing buried anterior chamber IOL haptics56
Figure (44) OCT showing the edges of the IOL in contact with the
crystalline lens while being dilated58
Figure (45) OCT showing the IOL in the eye (unaccommodated)58
Figure (46) OCT showing the IOL in the eye with 12.0 D of
accommodation58
Figure (47) Optical coherence tomographic image of the anterior
segment59
Figure (48) UBM of the treatment junction after lasik60
Figure (49) OCT image showing corneal thinning after lasik61
Figure (50) OCT image showing Pre and Post LASIK62
Figure (51) Corneal backscatter analysis 1 day after LASIK63
Figure (52) OCT of an eye 1 day after LASIK surgery64

Figure (53) Optical coherence tomography imaging and image
processing66
Figure (54) Hybrid method of corneal power calculation67
Figure (55) A: Orbscan. B: Optical coherence tomography profile
scan
Figure (56) Horizontal cross-sectional OCT image70
Figure (57) Anterior segment image with Pentacam-Scheimpflug
photography71
Figure (58) UBM of the Capsular bag73
Figure (59) UBM showing hyphema of AC as a complication of IOL
implantation73
Figure (60,61,62)UBM showing different complicated IOL positions75
Figure (63) OCT image of a senile nuclear cataract76
Figure (64) OCT image of a pseudophakic patient with secondary cataract
formation77
Figure (65, 66, 67) clear corneal incisions (CCIs) for
phacoemulsification by optical coherence tomography79,80
Figure (68) OCT scan of patients with Acrysof IOLs postoperatively82
Figure (69) OCT scans of patients with silicone IOLs postoperatively83
Figure (70) UBM image showing effect of light on pupillary block85
Figure (71) Malignant glaucoma with anterior displacement of the ciliary
processes narrowing the angle86
Figure (72) UBM image showing a case of pupillary block glaucoma86

Figure (73) Ultrasound biomicroscopy images in primary angle-closure		
glaucoma87		
Figure (74) High-speed 1.3μm wavelength OCT of an open angle89		
Figure (75) High-speed 1.3µm wavelength OCT of an occludable		
angle89		
Figure (76) Anterior segment OCT using 1.3-mm wavelength light		
provides better detail of AC angle anatomy90		
Figure (77) Anterior segment optical coherence tomography image of		
nasal and temporal angles91		
Figure (78) Side-by-side comparison of OCT and UBM images of the AC		
angle92		
Figure (79) Anterior segment OCT images illustrating a closed AC		
angle94		
Figure (80) Anterior segment optical coherence tomography images		
of the nasal and temporal angles95		
Figure (81) Pigment dispersion syndrome96		
Figure (82) Pigment dispersion syndrome after laser iridotomy97		
Figure (83) Anterior segment OCT scan showing contact between the		
edge of the IOL optic and the posterior surface of the iris97		
Figure (84) Ultrasound biomicroscopy showing the normal aspect of the		
fellow eye99		
Figure (85) Ultrasound biomicroscopy showing iris–IOL contact99		
Figure (86) UBM image showing surgical iridectomy100		

Figure (87) UBM image showing laser iridotomy
Figure (88) Cross-sectional optical coherence tomography image of an
angle before and after laser peripheral iridotom101
Figure (89) Anterior segment OCT images illustrating a closed AC
angle that opens after laser peripheral iridotomy102
Figure (90) OCT image of an acute angle glaucoma102
Figure (91) UBM of a functioning filtering procedure103
Figure (92) UBM image showing type E (encapsulated bleb)104
Figure (93) UBM image of type F (flattened bleb)104
Figure (94) UBM image of type H (high reflective bleb)105
Figure (95) UBM image of type L (low reflective bleb)105
Figure (96) shows UBM image with a visible aqueous drainage beneath
the scleral flap106
Figure (97) UBM image of a non-visible aqueous drainage route106
Figure (98) UBM image with failed filtration
Figure (99) UBM image showing bleb with mitomycin107
Figure (100) Visante anterior segment optical coherence tomography
Shows the diffuse filtering bleb
Figure (101) OCT image showing the cystic bleb110
Figure (102) OCT image showing the encapsulated bleb110
Figure (103) OCT image showing he flattened bleb110
Figure (104) OCT image showing a high successful bleb112
Figure (104) OCT image showing a high successful bleb

Figure (106) UBM showing keratoplasty with graft host contact		
Figure (107) Postoperative composite of 2 longitudinal axial UBM		
echograms115		
Figure (108) Post-operative ultrasound biomicroscopic image of the		
iridocorneal angle116		
Figure (109) Slit-lamp photograph of a patient after penetrating		
keratoplasty116		
Figure (110) Horizontal wide-field (1668 mm) optical coherence		
tomographic cross-sectional image		
Figure (111) UBM of pseudoexfoliative syndrome121		
Figure (112) Slitlamp OCT image showing pseudoexfoliative syndrome122		
Figure (113) Cornea and lens of Peter's anomaly123		
Figure (114) UBM showing Peter's anomaly		
Figure (115) UBM showing Peter's anomaly		
Figure (116) OCT showing Axenfeld-Rieger anomaly125		
Figure (117) Central iris nevus		
Figure (118) Peripheral iris nevus		
Figure (119) UBM image showing iridociliary cystic lesions		
Figure (120) UBM image showing iris melanoma invading the angle129		
Figure (121) UBM image showing ciliary body tumor129		
Figure (122,123) UBM image showing peripheral choroidal melanoma130		
Figure (124) UBM image showing cyclodialysis		
Figure (125) UBM image showing foreign bodies		

Figure (126) UBM image showing angle recession due to a blunt		
trauma		
Figure (127) UBM image showing traumatic iridodialysis		
Figure (128) OCT image showins patient after perforating eye injury		
With an anterior synechia135		

Contents:

	<u>Page</u>
Brief account on UBM and OCT:	
UBM	1
OCT	2
Principles of Operation of UBM & OCT:	
Principles of Operation of UBM	4
Principles of Operation of OCT	10
Optical Tomography versus Ultrasound	22
Normal appearance of anterior segment by UBM and AS-O	CT:
Normal appearance by UBM	26
Normal appearance by OCT	37
Applications of AS-OCT and UBM:	
Cornea	44
Keratoconus	49
Refractive surgery	53
Cataract and intraocular lenses	72
Glaucoma	84
Keratonlasty	114

Anterior segment surgery	119
Lens exfoliation	121
Anterior segment anomalies	123
Anterior segment tumors	126
Anterior segment trauma	132
Summary	137
References	142
Arabic summary	157