

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

Y COY

Risk Associating of Patients with Radiopharmaceuticals in Nuclear Cardiology

(In vivo and In vitro)

THESIS

Submitted for the partial fulfillment of

Ph D Degree in Medical Biophysics

By

MAHMOUD HANY KHEDR

Physicist in Nuclear Cardiology Unit
Critical Care Department
Cairo University Hospitals

TO
Biophysics department
Faculty of Science
Cairo University

2007

APPROVAL SHEET

TITLE OF THE PH.D. THESIS

Risk Associating Injection of Patients with Radiopharmaceuticals in Nuclear Cardiology (In vivo and In vitro)

NAME OF THE CANDIDATE

Mahmoud Hany Khedr

SUPERVISION COMMTTEE

Prof. Dr. Fadel M. Ali Professor of Biophysics Faculty of Science

Cairo University

Prof. Dr. Alia H. Abdel-Fattah

Professor of Critical Care Medicine Head of Critical Care Department Director of Nuclear Cardiology Unit

Cairo University

Prof. Dr. Wafaa M.A. Khalil

Professor of Biophysics
Faculty of Science
Cairo University

W.A. Khah

Assist. Prof. Dr. Reem H. El-Gebaly

Assistant Professor of Biophysics

Faculty of Science Cairo University

Head of Biophysics Department Prof. Dr/ Osiris Wanis

Acknowledgment

Thanks to Allah who gave us patience and, skill to continue this work with this success.

I would like to thank the great Professor Dr Fadel M.Ali who offered us all the facilities and encouraged us to get this work to light, he is always innovative, updated, taking new technologies cautiously and courageously, he taught us how to be patient, to work not only hard but also in a meticulous, skilled and efficient way. I am really unlimitedly indebted to him.

I would like to thank to Professor DR Wafaa M. Ahmed Khaleel for her encouraging me to initiate this work and her patience intelligent, continuous supervision through revision of this thesis

I would like to thank Professor Dr Alia Abd El-Fattah for her endless support and her sincere help and training in the field of nuclear cardiology, she always has new ideas work in a meticulas, hard and very active way and tries to innovate, update and actively participate in every part concerning her work.

Many thanks to professor assistant Dr Reem H. El- Gebaly who supported, encouraged and taught me how to think and how to work in a friendly way and helped me in data collection, actively participated in every part of this work, reviewed with me every single step from A-Z. I owe her much.

Many thanks to my great family they not only participated in this work as much as I did, they are every thing in my life I would never be able to reward them any part of what they give me.

I carry a big debt to my collaegues, the team of nuclear lab they were always beside me encouraging, helping, working, follwing with great care.

Mahmoud Hany Khedr

CONTENTS

	Page
List of Figures	I
List of Tables	v
List of abbreviations	VII
ABSTRACT	IX
INTRODUCTION	1
CHAPTER ONE: LITERATURE REVIEW	
1.1 Radiation Biological Effects	2
CHAPTER TWO: BASIC ASPECTS	
2.1 Radiopharmaceuticals	12
A-Radiopharmaceutical characteristics	13
B-Factors Influencing the Design of Radiopharmaceuticals	13
2-2 ⁹⁹ Mo/ ^{99m} Tc Generator	15
A- Production of Molybdenum-99	17
B-Performance of the ⁹⁹ Mo/ ^{99m} Tc Generator	18
2-3 Technetium ^{99m} Tc Pharmaceuticals	20
2-4,Myocardial Perfusion Radiopharmaceuticals	21
• ²⁰¹ Tl-Thallous Chloride	22
• ^{99m} Tc-MIBI (Cardiolite)	24
^{99m} Tc-Tetrofosmin (Myoview)	25
Other Perfusion Radiopharmaceuticals	26
2-5 Internal Radiation Dosimetry	28
 Calculation of Radiation Absorbed Dose 	28
 Calculation Effective Dose 	31
2-6 Gamma Camera	32
2-7 Blood	35

a) Erythrocytes (red blood cells)	3:
b) Hemoglobin	36
c) The Erythrocyte Membrane	39
2-8 Theory of Dielectric Relaxation	41
2-8-1. Basic Concepts of Dielectric Properties	43
2-8.2 Cole-Cole Equation	48
2-8-3. Kramers - Kronig Relations	49
2-8.4 Molecular Interpretation of the Dielectric Behavior of Biological Material	50
2-9 Solubilization of red blood cells by detergent	51
CHAPTER THREE: MATERIALS AND METHODS	
3-1, Patients studies	53
A- in vivo studies	53
B-In vitro studies	55
3-2 Animals. Studies	56
3.3 Red Blood Cell Membrane Solubilization test	57
3.4 Osmotic Fragility	58
3.5 Hemoglobin Extraction	60
3.6 Dielectrics: -	60
CHPTER FOUR: RESULTES	
4-1 Statistical analysis	62
4-2 Patients Results	62
A – in vivo	62
I. Solubilization studies	62
II. Osmo-fragility Studies	67
III. Dielectric studies	76
IV. Hemoglobin absorption spectra .	77
V. Blood film	82
B – in vitro	87
i. Solubilization studies	87
ii. Osmo-fragility Studies	89

iii.	Dielectric studies	92
iv.	Hemoglobin absorption spectra	93
v.	Blood film	95
4-3 A	nimal Results	96
i.	Solubilization studies	96
ii.	Osmo-fragility Studies	102
iii.	Dielectric studies	119
iv.	Hemoglobin absorption spectra	120
v.	Blood film	126
CHA	PTER FIVE: DISCUSSION AND CONCLUSION	
Discu	ssion	132
Conc	lusion	146
Appe	ndix I	147
Appe	endix II	163
Appe	ndix III	169
REFI	CRENCES	190
	•	
ARAI	BIC ABSTRACT	

List of Figures

		Pag
Figure (2-1)	Components of the ⁹⁹ Mo/ ^{99m} Tc generator system	. 16
Figure (2-2)	Decay scheme of parent ⁹⁹ Mo to stable ⁹⁹ Ru	16
Figure (2-3)	Elution efficiency of a ⁹⁹ Mo/ ⁹⁹ⁿ Tc generator	18
Figure (2-4)	Molecular structures of 99mTc-labeled complexes. A 99mTc-MIBI. B: 99mTc-	25
	tetrofosmin.	
Figure (2-5)	The principle of seven-PM-tube	33
Figure (2-6)	MULTISPECT 3 Gamma Camera system	34
Figure (2-7)	Schematic digram of Erythrocytes	36
Figure (2-8)	Structure of Hemoglobin	38
Figure(2-9)	Different types of Hemoglobin chain	38
Figure (2-10)	Schematic digram of double layered cell membrane	39
Figure (2-11)	Dispersion and absorption curves for a pure polar liquid respectively	42
Figure (2-12)	The polarization response to pulse of electric field	45
Figure (2-13)	Graphical representation of a Debye - type dielectric relaxation process	46
Figure (2-14)	Cole-Cole semi-circle for human serum albumin	48
Figure (2-15)	Dielectric dispersion curve at 20° C for an aqueous solution	50
Figure (4-1)	The variation of the turbidity of RBCs as a function of the detergent	63
	concentration for one patient from group I.	
Figure (4-2)	The variation of the turbidity of RBCs as a function of the detergent	64
	concentration for one patient from group II.	
Figure (4-3)	The variation of the turbidity of RBCs as a function of the detergent	65
	concentration for one patient from group III	
Figure (4-4)	The variation of the turbidity of RBCs as a function of the detergent	66
	concentration for one patient from group IV	
Figure (4-5)	Osmotic fragility curve for one patient from group I, pre injection	68
Figure (4-6)	Osmotic fragility curve for one patient from group I, 24 hr, post injection	68
Figure (4-7)	Osmotic fragility curve for one patient from group I, one week post injection	69
Figure (4-8)	Osmotic fragility curve for one patient from group II, pre injection	70
Figure (4.9)	Osmotic fragility curve for one patient from group II,24 hr, post 1st injection	70
Figure (4-10)	Osmotic fragility curve for one patient from group II, 24 hr, post 2 nd injection	71
Figure (4-11)	Osmotic fragility curve for one patient from group II,1 week post first injection	71
Figure (4-12)	Osmotic fragility curve for one patient from group III, pre injection	72
Figure (4-13)	Osmotic fragility curve for one patient from group III,24 hr, post 1st injection	72
Figure (4-14)	Osmotic fragility curve for one patient from group III, 24 hr, post 2 nd injection	73
Figure (4-15)	Osmotic fragility curve for one patient from group III, 1 week post first injection	73

Figure (4-16)	Osmotic fragility curve for one patient from group IV, pre injection	7
Figure (4-17)	Osmotic fragility curve for one patient from group IV, 24 hr, post injection	74
Figure (4.18)	Osmotic fragility curve for one patient from group IV, 3 days post injection	7:
Figure (4-19)	Osmotic fragility curve for one patient from group IV,12 days post first injection	7:
Figure (4-20)	Absorption spectra of Hb molecules for one patient from group I	78
Figure (4-21)	Absorption spectra of Hb molecules for one patient from group II	79
Figure (4-22)	Absorption spectra of Hb molecules for one patient from group III	80
Figure (4-23)	Absorption spectra of Hb molecules for one patient from group IV	81
Figure (4-24)	Blood film for one patient from group I	83
Figure (4-25)	Blood film for one patient from group II	84
Figure (4-26)	Blood film for one patient from group III	85
Figure (4-27)	Blood film for one patient from group IV	86
Figure (4-28)	The variation of the turbidity of RBCs as a function of the detergent	88
	concentration for one sample from group V	
Figure (4-29)	Osmotic fragility curve for one sample from group V pre adding	89
	radiopharmaceuticals	
Figure (4-30)	Osmotic fragility curve for one sample from group V, 24 hr post adding 99mTc	90
Figure (4-31)	Osmotic fragility curve for one sample from group V, 24 hr post adding 99mTc-	90
	MIBI	
Figure (4-32)	Osmotic fragility curve for one sample from group V, 24 hr post adding 99mTc-	91
	Terofosmin	
Figure (4-33)	Osmotic fragility curve for one sample from group V, 24 h post adding ²⁰¹ Tl	91
Figure (4-34)	Absorption spectra of Hb molecules for one sample from group V	94
Figure (4-35)	Blood film for group V	95
Figure (4-36)	The variation of the turbidity of RBCs as a function of the detergent	97
	concentration for one rat from group 1.	
Figure (4-37)	The variation of the turbidity of RBCs as a function of the detergent	98
•	concentration for one rat from group 2.	
Figure (4-38)	The variation of the turbidity of RBCs as a function of the detergent	99
	concentration for one rat from group 3.	
Figure (4-39)	The variation of the turbidity of RBCs as a function of the detergent	100
	concentration for one rat from group 4.	•
Figure (4-40)	The variation of the turbidity of RBCs as a function of the detergent	101
	concentration for one rat from group 5.	
Figure (4-41)	Osmotic fragility curve for one rat from group 1 pre injection	104
Figure (4-42)	Osmotic fragility curve for one rat from group 1 24 hr, post 1st injection	104
Figure (4-43)	Osmotic fragility curve for one rat from group 1 24 hr, post 2 nd injection	105

Figure (4-44)	Osmotic fragility curve for one rat from group 1 one week post 1 st injection	10:
Figure (4-45)	Osmotic fragility curve for one rat from group 1 two weeks post 1st injection	10
Figure (4-46)	Osmotic fragility curve for one rat from group 2 pre injection	10
Figure (4-47)	Osmotic fragility curve for one rat from group 2,24 hr, post 1st injection	10
Figure (4-48)	Osmotic fragility curve for one rat from group 2, 24 hr, post 2 nd injection	10
Figure (4-49)	Osmotic fragility curve for one rat from group 2 one week post 1st injection	108
Figure (4-50)	Osmotic fragility curve for one rat from group 2 two weeks post 1st injection	109
Figure (4-51)	Osmotic fragility curve for one rat from group 3 pre injection	110
Figure (4-52)	Osmotic fragility curve for one rat from group 3 24 hr, post 1 st injection	110
Figure (4-53)	Osmotic fragility curve for one rat from group 3 24 hr, post 2 nd injection	111
Figure (4-54)	Osmotic fragility curve for one rat from group 3 one week post 1 st injection	111
Figure (4-55)	Osmotic fragility curve for one rat from group 3 two weeks post 1 st injection	112
Figure (4-56)	Osmotic fragility curve for one rat from group 4 pre injection	113
Figure (4-57)	Osmotic fragility curve for one rat from group 4 24 hr, post 1 st injection	113
Figure (4-58)	Osmotic fragility curve for one rat from group 4 24 hr, post 2 nd injection	114
Figure (4-59)	Osmotic fragility curve for one rat from group 4 one week post 1 st injection	114
Figure (4-60)	Osmotic fragility curve for one rat from group 4 two weeks post 1 st injection	115
Figure (4-61)	Osmotic fragility curve for one rat from group 5 pre injection	116
Figure (4-62)	Osmotic fragility curve for one rat from group 5 24 hr, post 1 st injection	116
Figure (4-63)	Osmotic fragility curve for one rat from group 5 24 hr, post 2 nd injection	117
Figure (4-64)	Osmotic fragility curve for one rat from group 5 one week post 1 st injection	117
Figure (4-65)	Osmotic fragility curve for one rat from group 5 two weeks post 1st injection	118
Figure (4-66)	Absorption spectra of Hb molecules for one rat from group1	121
Figure (4-67)	Absorption spectra of Hb molecules for one rat from group2	122
Figure (4-68)	Absorption spectra of Hb molecules for one rat from group3	123
Figure (4-69)	Absorption spectra of Hb molecules for one rat from group4	124
Figure (4-70)	Absorption spectra of Hb molecules for one rat from group5	125
Figure (4-71)	Blood film for one rat from group 1	127
Figure (4-72)	Blood film for one rat from group 2	128
Figure (4-73)	Blood film for one rat from group 3	129
Figure (4-74)	Blood film for one rat from group 4	130
Figure (4-75)	Blood film for one rat from group 5	131
Figure (5-1)	Differentiation of solubilization curve for one patient from group I	136
Figure (5-2)	Differentiation of solubilization curve for one patient from group II	137
Figure (5-3)	Differentiation of solubilization curve for one patient from group III	138
Figure (5-4)	Differentiation of solubilization curve for one patient from group IV	139
Figure (5-5)	Differentiation of solubilization curve for one sample from group V	140

Figure (5-6)	Differentiation of solubilization curve for one rat from group 1	141
Figure (5-7)	Differentiation of solubilization curve for one rat from group 2	142
Figure (5-8)	Differentiation of solubilization curve for one rat from group 3	143
Figure (5-9)	Differentiation of solubilization curve for one rat from group 4	144
Figure (5-10)	Differentiation of solubilization curve for one rat from group 5	145