Role of Diffusion Tensor Imaging and Positron Emission Tomography in Assessment of Epilepsy

Essay

Submitted for partial fulfillment of Master Degree in

Radio diagnosis

By Ahmed Saber Ibrahem Elharouny

(M.B. B.Ch)
Ain Shams University
Supervised by

Dr. Alia Abdallah El Fiky

Professor of Radio diagnosis
Faculty of Medicine
Ain Shams University

Dr. Mennatallah Hatem Shalaby

Lecturer of Radio diagnosis
Faculty of medicine
Ain Shams University

Faculty of Medicine Ain-Shams University 2014

ACKNOLEDGEMENT

First and foremost thanks to Allah

I have honored and privileged to have worked under supervision of such distinguished and eminent professors.it has truly been a chance of life time.

I would like to express my deepest gratitude to *Prof.Dr Alia ELfikky*, Professor of Radiodiagnosis, faculty of medicine, Ain Shams University for her valuable assistance and sincere advice.

I would like to express my deep thanks and gratitude to *Dr. Menna Alah Hatem*, lecturer of Radiodiagnosis, faculty of medicine, Ain Shams University for her kind supervision, guidance and support.

Words could not express the feeling of gratitude and respect I carry to who had tirelessly and patiently supervise this work

DEDICATION

TO MY FAMILY
WHO HAVE BEEN THERE EVERY
STEP ON THE
WAY
I OWE THEM ALL THAT I HAVE
BECOME AND
ALL THAT I EVER WILL BE......

Contents

1.	Introduction and aim of the work	1-4
2.	Anatomy of the temporal lobe	5-21
	A) Gross anatomy	5-21
	B) MRI anatomy	22-25
3.	Patho physiology and clinical picture of epilepsy	26-52
4.	Technique of magnetic resonance imaging of epilepsy	53-83
5.	Technique of positron imaging tomography of epilepsy	84-95
6.	Manifestations of epilepsy by magnetic resonance diffusion tensor imaging.	96-112
7.	Manifestations of epilepsy by positron imaging tomography	113-148
8.	Summary & Conclusion.	148-150
9.	References	151-171
10	.Arabic Summary	

List of Abbreviation

ADC	APPARENT DIFFUSION COEFFINT
BOLD	BLOOD OXYGEN LEVEL DEPENDANT
CC	CORPUS CALLOSUM
СНО	CHOLINE
CNS	CENTRAL NERVOUS SYSTEM
CSI	CHEMICAL SHIFT IMAGING
CST	CORTICOSPINAL TRACT
3D	THREE DIRECTIONAL
DT	DECUSSATION OF SUPERIOR
	CEREBELLAR PEDUNCLE
DSCP	DIFFUSION TENSOR
DTI	DIFFUSION TENSOR IMAGING
DTT	DIFFUSION TENSOR TRACTOGRAPHY
DW	DIFFUSION WEIGHTED
DWI	DIFFUSION WEIGHTED IMAGING
EPI	ECHO0PLANNER IMAGING
FA	FRCTIONAL ANISOTROPY
FACT	FIBER ASSIGNMENT BY CONTINUOUS
	TRACKING
FLAIR	FLUID ATTENUATION INVERSION
	RECOVERY

fMRI	Functional MRI
GBM	GLIOBLASOMAMULTIFORME
HARDI	HIGH ANGULAR RESOLUTION DIFFUSION
	IMAGING
ICT	INTRACRANIAL TENSION
ILF	INFERIOR LONGITUDINAL FASCICULUS
IOFF	INFERIOR OCCIPITO FRONTAL FASCICULUS
iMRI	INTRAOPERATIVE MRI
MD	MEAN DIFFUSIVITY
ml	MYOINOSITOL
Ml	MEDIAL LEMINISCUS
MR	MAGNETIC RESONANCE
MRI	MAGNETIC RESONANCE IMAGING
MTC	MAGNETIZATION TRANSFER CONTRAST
PET	POSITRON EMISSION TOMOGRAPHY
FDG	FLUORODEOXYGLUCOSE
PMT s	PHOTOMULTIPLIER TUBE
BGO	BISMUTH GERMINATE
GSO	GADOLINIUM OXYORTHOSILICATE
LSO	LUTETIUM OXYORHTOSILICATE
SUV	STANDARDIZED UPTAKE VALUE
[18F] FDG	FLUORINE 18 FLUORODEOXYGLUCOSE
TLE	TEMPORAL LOBE EPILSPY

GABAA	Gamma-aminobutyric acid A
5-HT _{1A}	5-HYDROXYTRYPTAMINE
[18F]-MPPF	[18F] fluorobenzamido] ethylpiperazine
HPLC	high-performance liquid chromatography
CBZR	Central benzodiazepine receptors
ALARA	as low as reasonably achievable
TEDE	total effective dose equivalent
PM	photomultiplier (tube)
SPECT	single photon emission computed tomography
SUV	standard uptake value
PACS	Picture Archival and Communication System
GSO	gadolinium oxyorthosilicate

List of Figures

NUMBER	FIGURE NAME	PAGE
1	Boundaries of the temporal lobe	6
2	Anatomical landmarks of the cortex of the left	7
2	temporal lobe	
3	The hippocampus, dentate gyrus and fimbria	10
4	A transverse section through the body of the	12
	hippocampus and dentate gyrus	
5	coronal section through the temporal lobe	15
6	Colour scheme	15
7	Anatomical relations of the temporal lobe	16
8	Anatomical relations of the temporal lobe	17
9	Anatomical relations of the temporal lobe	18
10	Arteries supplying the temporal lobe.	19
11	The larger superficial cerebral veins	20
12	coronal T1 MR Images through cerebral	22
	hemispheres	
13	lobulated superior surface of hippocampal	23
	head	
14	body of hippocampus ¶hippocampal gyrus	23
15	Image at corpus callosum splenium	24
16	Image more posterior shows interhemispheric	24
	fissure	

NUMBER	FIGURE NAME	PAGE
17	sagittal Tl MR Images from lateral to medial	25
	shows lateral aspect of sylvian fissure	
18	sagittal Tl MR imagesshows central sulcus	25
	bordered by precentral &postcentral gyri.	
19	Left hippocampal sclerosis (3.0 T MRI)	34
20	Multiple transverse DW images of same brain	56
	slice with diffusion gradients applied in	
	different directions demonstrate anisotropic	
	diffusion.	
21	Production of tractography	59
22	Abstract representation	61
23	Tractography of corticospinal tract	65
24	schematic diagram of some cortico-cortical	69
	connections by associationFibers.	
25	3D reconstruction results of association fibers	70
	in the limbic system	
26	Cingulum, sagittal view	71
27	Trajectories of the cingulum, and fornix/stria	73
	terminalis	
28	Illustration, Coronal directional map,	75
	Tractogram	
29	corona radiata	76
30	Internal capsule, axial view	77

NUMBER	FIGURE NAME	PAGE
31	Geniculocalcarine tract (optic radiation), axial	78
	view	
32	Corpus callosum axial view	79
33	Sagittal directional map of the corpus callosum	80
34	Anihalation reaction	87
35	Positron emission	89
36	a hybrid PET-CT scanner shows the PET ring	91
	detector system	
37	photograph side view of hybrid PET-CT	93
	scanner shows the PET (P) and CT (C)	
	components	
38	Hippocampal lesion in temporal lobe epilepsy	99
39	High sensitivity of diffusion images in	100
	cryptogenic epilepsy	
40	Potential patterns of WM fiber tract alteration	104
	by cerebral neoplasms	
41	Cortical dysplasia in a 22-year-old woman	105
	with motor seizure disorder of the left hand	
42	Tractography from periventricular nodular	106
	heterotopia	
43	DTI pattern 1	108
44	DTI pattern 2	109

NUMBER	FIGURE NAME	PAGE
45	DTI pattern 3	110
46	DTI pattern 4	111
47	Ictal perfusion changes and interectal	118
	fluorodeoxyglucose- PET metabolism in	
	mesial temporal lobe epilepsy	
48	FDG-PET of medial temporal lobe epilepsy	119
49	F-18 FDG PET findings in a 1-year-old boy	126
	with tuberous sclerosis	
50	The patient was a 21-year-old woman with a 3-	130
	month history of a simple partial status	
	epilepticus of the left parietal lobe	
51	[18F]FDG (A: coronal, B: transversal) and	135
	[18F] ethylflumazenil (C: coronal, D:	
	transversal) PET scans of a patient with right	
	TLE	

INTRODUCTION AND AIM OF WORK