معدل انتشار اعتلال القلب والاوعية الدموية لدى الوضى في بداية الاستصفاء الدموي

رسالة توطئه للحصول على درجة الماجستير في أمراض الباطنة العامة مقدمة من

الطبيب / عبد الرحمن علي البريقي بكالوريس الطب والجراحة ـ جامعة عين شمس

تحت إشراف

الأستاذ الدكتور/ عبد الباسط الشعراوي عبد العظيم

أستاذ أمراض الباطنة والكلى كلية طب ـ جامعة عين شمس

الدكتور/ عبد الرحمن نبيل خضر

مدرس أمراض الباطنة والكلى كلية طب ـ جامعة عين شمس

الدكتور / محمد سعيد حسن

مدرس أمراض الباطنة والكلى كلية طب ـ جامعة عين شمس

> كلية طب جامعة عين شمس 2016

Prevalence of Cardiovascular Dysfunctions in Patients Initiating Hemodialysis

Thesis

Submitted for Partial Fulfillment of Master Degree in Internal Medicine

By

Abdelrahman Ali Elbraky

M.B.B.CH. Faculty of Medicine –Ain Shams University

Supervised by

Prof. Dr. Abd El Basset El Shaarawy Abd El Azim

Professor of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

Dr. Abdelrahman Nabil Khedr

Lecturer of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

Dr.Mohamed Saeed Hassan

Lecturer of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2016

Contents

Subject	Page
List of abbreviations	b
List of tables	е
List of figures	g
Introduction	1
Aim of the study	3
Review of literature	4
Chapter (1): Cardiovascular Diseases in	4
Hemodialysis Patients	47
Chapter (2): Optimal predialysis care	
Patients and Methods	71
Results	74
Discussion	89
Summary	100
Conclusion and Recommendations	103
References	105
Arabic summary	-

List of abbreviations

Abb.	Full Term
cTnl	cardiac troponin I
cTnT	cardiac troponin T
CV	Cardio vascular
CVA	Cerebrovascular accident
CVD	Cardiovascular disease
EBCT	Electron beam computed tomography
EF	Ejection fraction
ESA	Erythropoiesis stimulating agent
ESRD	End stage renal disease
FGF-23	Fibroblast growth factor 23
GDF-15	Growth differentiation factor 15
GFR	Glomerular filtration rate
HBV	Hepatitis B virus
HCV	Hepatitis C virus
HD	Hemodialysis

HGB	Hemoglobin
HIV	Human immunodeficiency virus
HsCRP	High sensitivity C-reactive protein
HsTnl	High seneitivity troponin I
IL-6	Interleukin 6
IL-10	Interleukin 10
KDOQI	Kidney Disease Outcomes Quality Initiative
List	of Abbreviations(cont)
LA	Left atrium
LPS	lipopolysacharide
LV	Left ventricle
LVD	Left ventricular dilatation
LVDD	Left ventricular diastolic dysfunction
LVH	Left ventricular hypertrophy
LVMI	Left ventricular Mass index
MDRD	Modification of Diet in Renal Disease
mTOR	mammalian target of rapamycin
Msx2	Msh hoebox 2 gene
NFAT	Nuclear factor of activated T cells

NHT	Normal hematocrit trial
NP	Nurse practitioner
NT-proBNP	N-terminal prohormone Brain naturitic peptide
Osterix	Osteobalst specific transcription factor
PE	Pulmonary embolism
PTH	Parathyroid hormone
PTX3	Pentroxin 3
RAAS	Renin-angiotensin-aldosterone system
rHuEpo	Recombinant Human Erythropoietin
RRT	Renal replacement therapy
Runx 2	Runt related transcription factor 2
List	of Abbreviations(cont)
SCD	Sudden cardiac death
SR – B1	Scavenger receptor class B1
s RAGE	Soluble receptor of advanced glycation end products
Sox 9	Sex determining region Y box 9 gene
SWMA	Segmental wall motion abnormality
TDI	Tissue Doppler imaging
TIBC	Total iron binding capacity
•	

Tall like receptor 4	TLR4
Transferretin saturation	TSAT
Vascular smooth muscle cell	VSMC

List of tables

Review of Literature:

n	Title	Page
(1)	Traditional versus uremia related risk factors	21
	for CVD	

(2)	Progression factors: treatment and targets for predialysis care patient	51
(3)	Metabolic complications: treatment and targets in . predialysis patients	55
(4)	Consequences of late referral of patients with chronic kidney disease	70

List of tables

Results:

n	Title	Page
(1)	Baseline characteristics of the study	74
	population	
(2)	Etiology of ESRD in the study group	77
(3)	Drug history of the study group	78
(4)	Predialysis care of the study group	79
(5)	Laboratory results of the study group	81
(6)	Echocardiological Findings in the study group	82
(7)	Comparison of laboratory results between	84
	group (1) patients who received predialysis	
	ephrological care and the group (2) patient	
	who didn't receive the predialysis	
	nephrological care.	
(8)	Comparison of vascular access between	85
	group (1) patients who received predialysis	
	nephrological care and the group (2) patient	
	who didn't receive the predialysis	
	nephrological care	

(9)	Echocardiological finding among group (1)	87
	were the patients who rece ived predialysis	
	nephrological care and the group (2) were	
	the patient who didn't receive the predialysis	
	nephrological care	
(10)	Comparison of laboratory profile between patients with LVH and patients without LVH	

List of figures *Review of Literature:*

n	Title	Page
(1)	CVD mortality in the general population (GP)	5
	compared with patients with ESRD	
(2)	Causes of death in prevalent HD patients	8
(3)	dose-effect relation between HsCRP level and IL-6:	10
	IL-10 ratio and the number of LV segments that	
	subsequently developed wall motion abnormalities	
	during or after HD	
(4)	Relative mortality risk by serum phosphorus quintiles	13
	in 6,407 patients with renal disease who had been	
	on haemodialysis therapy for at least 1 year	
(5)	Coronary calcification in dialysis patients compared	14
	with nonrenal disease patients with or without CAD	
(6)	Probability of overall survival in patients with ESRD	15

	with aortic stiffening	
(7)	Kaplan-Meier curve showing mortality in patients with ESRD by Hgb level	19
(8)	Pathophysiology of coronary heart disease in (ESRD)	23
(9)	Factors contributing to capillary dropout and left ventricular hypertrophy in ESRD	28
(10)	Kaplan-Meier survival curves for CV mortality patients with CACS	40
(11)	Early preparation for dialysis. AVF arteriovenous fistula	60
(12)	Integrated predialysis care concept	62
(13)	Multidisciplinary approach of predialysis care	68

List of Figures(cont....)

Results:

n	Title	Page
(1)	Gender distribution in the study population	75
(2)	Viral markers status of the participants	75
(3)	Types of vascular access in the study group	76
(4)	Etiology of ESRD in the study population	77
(5)	Drug history of the study group	79
(6)	History of predialysis care in the study group	80
(7)	Echocardiological findings in the study group	82
(8)	Vascular access in the 2 groups	85
(9)	Echocardiological findings among 2 groups	88

Chronic kidney disease (CKD) is a worldwide public health problem and cardiovascular mortality is estimated to be at least 10- to 100-fold higher in patients with end stage renal disease (ESRD) than in the age matched general population (*Chan et al.*, 2011, *Herzog et al.*, 2011).

Mortality rates among hemodialysis (HD) patients exceed 20% per year and a higher mortality rate within the first year after initiation of HD has been described (Rognant & Laville, 2014). The all-cause mortality and mortality due to cardiovascular disease or other causes is found to peak in the second month after dialysis initiation (Bradbury et al, 2007, USRDS 2013). In fact, recent studies confirmed highest mortality in the first 2-6 weeks after dialysis initiation (Chan et al. 2011, Foley et al, 2014).

Considerable efforts sought to highlight the factors of this early mortality and found that the clinical conditions of patients in the period before

dialysis play a role. In addition, the pattern of CKD care could be an important and modifiable factor, with late referral to a nephrologist and poor management of cardiovascular risk in CKD patients being associated with worse prognosis (Jungers et al, 2001, Goldstein et al, 2004, Rognant & Laville, 2014, Ishani et al, 2014).

Patients who initiate chronic dialysis are older, have more co-morbid illness or subclinical damage such as left ventricular hypertrophy and calcifications than a decade prior, and subsequently may experience hospitalizations in follow-up. more Approximately dialysis patients have of incident three quarters an independent predictor of increased LV mass, cardiovascular events and death after onset of ESRD (Sood et al, 2014).

In absence of well-organized integrated system for care of pre-dialysis patients, evaluating patients at dialysis initiation may provide an index of degree of care given for these patients and a proxy for identifying high risk patients.

AIM OF THE STUDY

To assess cardiovascular status and clinical characteristics of patients initiating hemodialysis as an index of predialysis care and to identify significant cardiovascular risks in these patients.