Serum Surfactant Protein D as a Prognostic Factor in Idiopathic Pulmonary Fibrosis Patients

Thesis Submitted for fulfillment of Master Degree
In Medical Biochemistry

By

Haidi Abdallah Abu-Hussein

(M.B.B.Ch)

Supervised by

Prof. Dr. Dawlat El-Miligy

Professor of Medical Biochemistry
Faculty of Medicine, Cairo University

Dr. Laila Ahmed Rashed

Assistant Professor of Medical Biochemistry Faculty of Medicine, Cairo University

Dr. Mohamed Wafai Zakaria

Assistant Professor of Chest-Diseases Faculty of Medicine, Cairo University

Faculty of Medicine
Cairo University
2010

Abstract

Pulmonary fibrosis (PF) is defined as a specific form of chronic fibrosing interstitial pneumonia that is limited to the lung and associated with the histological appearance of UIP on a surgical lung biopsy. The diagnosis of IPF can only be made after the exclusion of other known causes of interstitial lung disease such as drug toxicities, environmental exposures, and collagen vascular diseases.

ILD is a collection of non-neoplastic lung disorders, both acute and chronic, that present with variable degrees of inflammation and fibrosis. ILD is also termed diffuse parenchymal lung diseases (DPLD).

The IIPs are defined by the ATS/ERS consensus classification as seven distinct disease entities. IPF is the most common IIP and its diagnosis is reserved for patients whose biopsy reveals the UIP pathology or in whom the clinical presentation and high-resolution computed tomography (HRCT) reveal a characteristic pattern.

Key Words:

Pulmonary Fibrosis, Idiopathic Pulmonary Fibrosis, Pulmonary Surfactant.

Acknowledgement

First of all, I always feel indebted to ALLAH whose blessings cannot be counted and who gave me the power to finish this thesis.

I am indebted to **Prof. Dr. Dawlat El-Miligy**, Prof of Medical Biochemistry, Faculty of Medicine, Cairo University and Head of Medical Biochemistry Department, Faculty of Medicine, October $6^{\rm th}$ University for her wise guidance, encouragement and close supervision to introduce this work in the best way.

I am also indebted to Prof. Dr. **Dr. Laila Ahmed Rashed** Assistant Professor of Medical Biochemistry, for her efforts in supervising the practical work, and her assistance in revising the theoretic part of the thesis.

I would like to express my deepest appreciation and gratitude to **Prof. Dr. Mohamed Wafaa Zakaria**, Assistant Professor of Chest-Diseases, for his valuable contribution and guidance regardingthe disgnosis of the cases and related chest examinations.

I would like to express my deep thanks to all the members of the unit of **Medical Biochemistry** for their help and support.

Finally I would like to express my deepest love and appreciation to my parents and my family for their great support and encouragement.

Table of Contents

List of AbbreviationsI
List of FiguresIII
List of TablesV
Introduction and Aim of Work
Review of Literature4
Chapter One: Pulmonary Fibrosis5
Chapter Two: Idiopathic pulmonary fibrosis
Chapter Three: Pulmonary Surfactant40
Patients and Methods53
Results60
Discussion74
Summary83
Reference
Appendix
Arabic Summary

List of Abbreviations

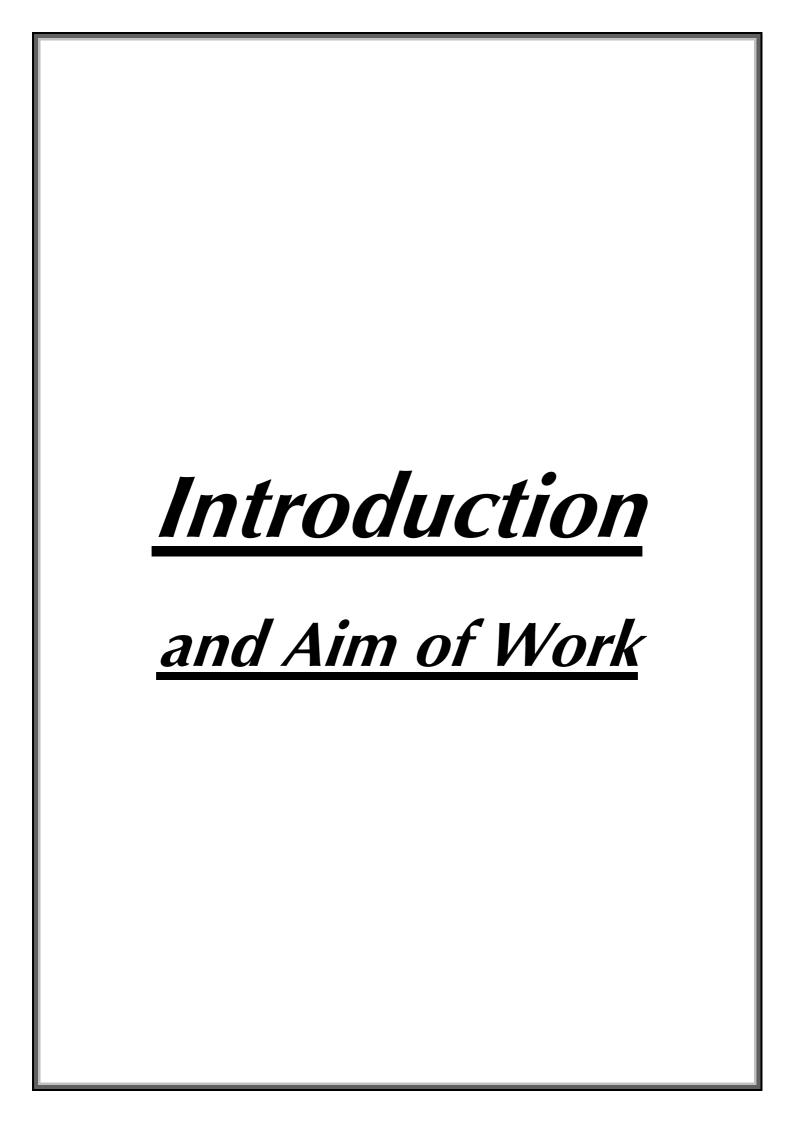
(in alphabetical order)

A-A Gradient	Alveolar-to-Arterial Oxygen Gradient
AIP	Acute Interstitial Pneumonia
ARDS	Adult Respiratory Distress Syndrome
ATS	American Thoracic Society
BAL	Bronchoalveolar Lavage
cAMP	Cyclic Adenosine Monophosphate
CFA	Cryptogenic Fibrosing Alveolitis
COP	Cryptogenic Organizing Pneumonia
DAD	Diffuse Alveolar Damage
DIP	Desquamative Interstitial Pneumonia
DPLD	Diffuse Parenchymal Lung Diseases
EGF	Epidermal Growth Factor
ERS	European Respiratory Society
FRC	Functional Residual Capacity
FVC	Forced Vital Capacity
GM-CSF	Granulocyte-macrophage colony-stimulating factor
HRCT	High-Resolution Computed Tomography
HSV	Herpes Simplex Virus
IIP	Idiopathic Interstitial Pneumonias
ILD	Interstitial Lung Disease
IPF	Idiopathic pulmonary fibrosis

_____I

IRDS	Infantile Respiratory Distress Syndrome
LIP	Lymphocytic Interstitial Pneumonia
mRNA	Messenger Ribonucleic Acid
NHLBI	National Heart, Lung and Blood Institute
NSIP	Non-Specific Interstitial Pneumonia
PDGF	Platelet-Derived Growth Factors
PF	Pulmonary fibrosis
RB-ILD	Respiratory Bronchiolitis–Associated Interstitial Lung
	Disease
RV	Residual Volume
SP-A	Surfactant Protein – A
SP-D	Surfactant Protein – D
SP	Surfactant Protein
TGF-β	Transforming Growth Factor-Beta
TLC	Total Lung Capacity
TNF-α	Tumor Necrosis Factor-Alpha
UIP	Usual Interstitial Pneumonia
VATS	Video-Assisted Thoracoscopy

List of Figures

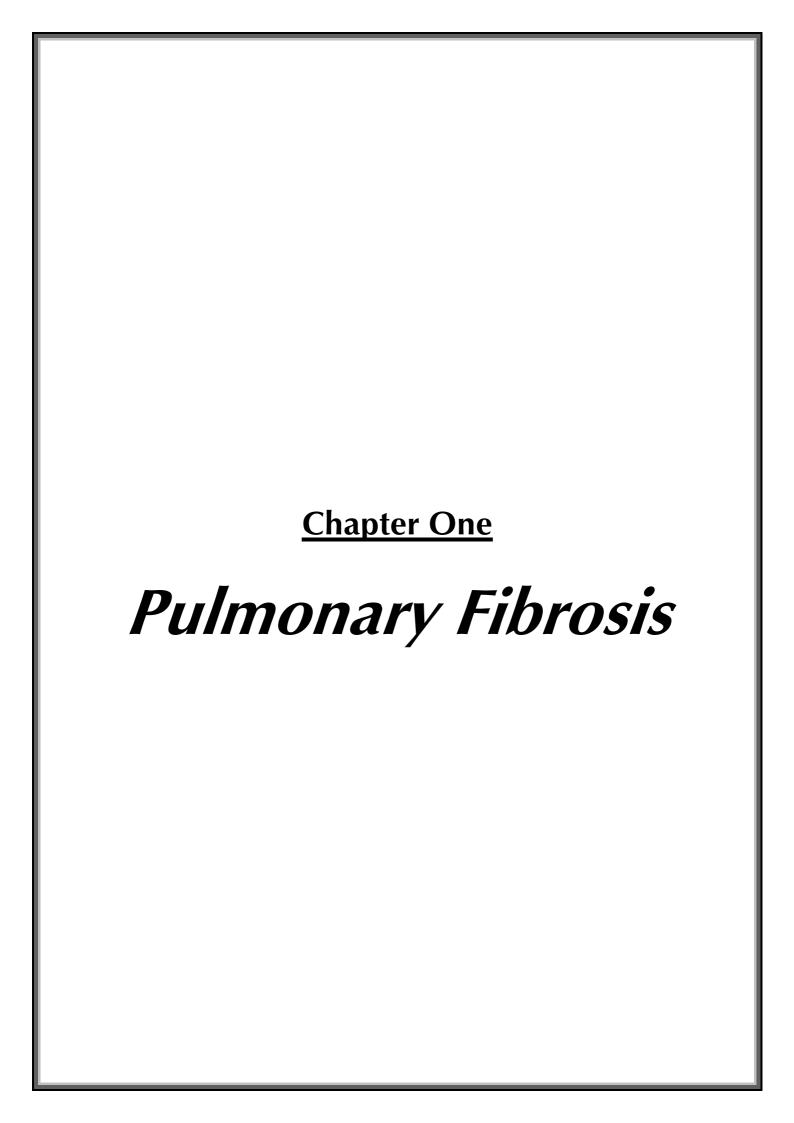

Number	Subject	Page
Figure (1)	Spatial heterogeneity (areas of fibrosis alternating with	
	areas of normal parenchyma) and temporal	9
riguic (1)	heterogeneity are characteristic Subpleural and	
	paraseptal histopathologic differential diagnoses.	
E: (2)	A characteristic feature of the disease is the subversion	10
Figure (2)	of the lobular architecture produced by the fibrosis.	10
	The ground-glass may be linked not only to the	
Figure (3)	presence of areas of alveolitis and active fibroblast	11
	proliferation, but also to the intralobular septal	
	thickening caused by mild fibrosis.	
	Posteroanterior chest radiograph of a 67-year-old man	
Figure (4)	with progressive dyspnea revealing bilateral reticular	30
	infiltrates with lower lobe predominance.	
	Computed tomography scan illustrates the "classic"	
Figure (5)	features of idiopathic pulmonary fibrosis (IPF).	33
	Bilateral, peripheral, and subpleural reticular	
	infiltrates are evident.	
	A. Low-magnification photomicrograph of usual	
	interstitial pneumonia (UIP) showing the characteristic	
	heterogeneous involvement of the parenchyma. Zones	
	of interstitial fibrosis are seen alternating with areas of	
Figure (6)	normal lung. B. Higher magnification demonstrates	35
	enlarged cystic airspaces lined with hyperplastic	
	alveolar epithelium (arrowheads). Beneath themucosal	
	layer is an advancing region of young fibrosis	

	containing loose extracellular matrix (pale pink	
	staining) and fibroblasts (arrows).	
	Scanning view of usual interstitial pneumonia (UIP)	
	demonstrates the characteristic variegated appearance	
Figure (7)	of UIP. Note the honeycomb change (arrowheads)	
	present in the region of dense fibrosis adjacent to the	35
	pleural surface. A fibroblast focus (arrow) is seen at	
	the leading edge of advancing fibrosis.	
Figure (8)	Structure of Tubular myelin.	44
Figure (9)	Life cycle of pulmonary surfactant.	44
Figure (10)	Pulmonary collectins: surfactant proteins A and D.	46
Figure (11)	Mean \pm SD FEV1 (L) in different studied groups.	64
Figure (12)	Mean \pm SD FVC (L) in different studied groups.	65
Figure (12)	Mean ± SD FEV1/FVC (%) in different studied	66
Figure (13)	groups.	
Figure (14)	Mean ± SD of Serum Surfactant Protein D level	68
Figure (14)	(ng/ml) in different studied groups.	
E' (15)	Serum Surfactant Protein D level (ng/mL) in relation	70
Figure (15)	to FEV1 (L).	
F: (10)	Serum Surfactant Protein D level (ng/mL) in relation	71
Figure (16)	to FVC(L)	
	Serum Surfactant Protein D level (ng/mL) in relation	72
Figure (17)	to pulmonary function tests.	
71	Typical images of two types of IPF distinguished by	104
Figure (18)	characteristics on chest HRCT. (A) GGO-dominant type. (B) PCO-dominant type.	101
Figure (19)	Idiopathic pulmonary fibrosis - Three CT images	105
Figure (20)	High-resolution CT shows patchy ground-glass	106
	opacities and fibrosis with reticulation and traction bronchiectasis	100

List of Tables

Table Number	Subject	Page
Table 1	Surfactant Protein D: Function - page 45	47
	Means \pm SD of age and smoking status, and P-	
	Value of duration of smoking (per-month) and	(1
Table 2	the number of cigarettes (per-day) in different	61
	studied groups.	
Table 3	Mean ± SD and P-Value of Pulmonary	62
	Function Test (PFT) in studied groups.	02
	Mean ± SD and P-Value of Serum Surfactant	
Table 4	Protein D (ng/ml) level in different studied	67
	groups.	
Table 5	Serum Surfactant Protein D level (ng/ml) in	69
	relation to pulmonary function tests.	09
	Serum Surfactant Protein D level (ng/ml) in	
Table 6	relation to smoking duration per-month and	73
	number of cigarettes per-day.	
Table 7	Serum Surfactant Protein D level (ng/ml) in	73
	relation to age.	/3
	The recruitment, microbiologic diagnosis,	
Table 8	susceptibility results of the study, and the	102
	background characteristics of ITT patients.	

____V____


Introduction and Aim of Work

Idiopathic pulmonary fibrosis (IPF) carries a 50% 5-years survival rate (*Day*; 1994). Current therapies are only marginally effective in improving pulmonary function or survival time. The pathogenesis of IPF is characterized by excessive wound healing with chronic inflammation, fibroblast proliferation and extracellular matrix production with chronic scarring and honeycomb formation. This fibroproliferative response is uniformly accompanied by type II cell hyperplasia (*Walker*; et al., 1986). The hydrophilic surfactant proteins (SP)-A and SP-D belong to the collection subgroup of the C-type lectin superfamily, along with mannose-binding glycoproteins and collectin CL43 (*Voorhout*; et al., 1992). Two types of nonciliated epithelial cells, in the peripheral airways, Clara cells and alveolar type II cells produce these lung collectins (*Jeffrey and Ann*; 2008).

Surfactant proteins –D (SP-D), produced and secreted by type II cells, can be detected in serum and are elevated in patients with certain inflammatory lung diseases, including IPF (Voorhout, et al.; 1992; Sinclair, et al.; 2003; Shulenin, et al.; 2004; and Jeffrey and Ann; 2008). Although the exact mechanism for the increase in SP-D in the circulation is not known, it is probably a combination of a loss of epithelial integrity due to injury and an increased mass of type II cells due to hyperplasia. Because the concentrations of serum SP-D probably vary with disease and lung inflammation, measurement of these two proteins might prove to be useful markers for the pathogenesis and detection of IPF (Wert, et al.; 2000; Whitsett and Weaver, 2002; Ikegami, et al.; 2005).

The aim of the present study is to investigate the possible role of SP-D in the pathogenesis and prognosis of idiopathic pulmonary fibrosis patients.

