

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار المناد الم

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

بعض الوثائق الاصلية تالفة

بالرسالة صفحات لم ترد بالاصل

"Corrosion inhibition of carbon steel in aqueous solutions using some organic phosphorus compounds and inorganic additives"

A Thesis submitted

. **To**

Faculty of Science

Cairo University

By

Waleed Samy Abd El-Latif Hassan (M.Sc.)

For

The Degree of Ph. D. of Science (Chemistry)

2008

CXNZ

Approval sheet for submission

Title of Ph. D. thesis: Corrosion inhibition of carbon steel in aqueous solutions using some organic phosphorus compounds and inorganic additives.

Name of the candidate: Waleed Samy Abdel El-Latif Hassan

This thesis has been approved for submission by the supervisors:

Prof. Dr. Said Abd El-Rahman Mostafa Salih

Signature: S.A. Mostfa

Prof. Dr. Rifaat Hassan Hilal

Chairman of Chemistry Department

Faculty of Science- Cairo University

ABSTRACT

Name: Waleed Samy Abd El-Latif Hassan

Title of Thesis: "Corrosion inhibition of carbon steel in aqueous solutions using some organic phosphorus compounds and inorganic additives"

Submitted by: Waleed Samy Abd El-Latif Hassan

For the Ph.D., Faculty of Science Cairo University 2008

The present work aimed to study the corrosion behavior of carbon steel in HCl solutions and its inhibition by using organo-phosphorus compounds and inorganic additives. The phosphorus compounds included Tri-n-Butyl Phosphonate (TBP) and Tri-n-Octyl Phosphine Oxide (TOPO). The inorganic additives were Zn⁺² and Mg⁺² ions.

The techniques of measurements used in this study were: weight loss, linear polarization, electrochemical impedance spectroscopy, corrosion penetration and poteniostatic polarization. The results indicated that the rate of corrosion of carbon steel increases with the increase of HCl concentration and with the increase of temperature. The inhibition efficiency (I.E %) was calculated from the data of the different techniques of measurements. The value of I.E% increases gradually with the increase of inhibitor concentration (TBP) or (TOPO) reaching a limiting value at higher concentrations of inhibitor. The combinations (TBP + Zn⁺² ions up to 71.42 ppm) and (TBP + Mg⁺² ions) have higher inhibition efficiency than TBP alone. Also, the combinations (TOPO + Zn⁺² ions up to 71.42 ppm) and (TOPO + Mg⁺² ions) have higher inhibition efficiency than TOPO alone.

The inhibitors adsorbed on the surface of the carbon steel according to Frumkin's adsorption isotherm. The adsorption of the inhibitors on the metallic surface could be physically or chemically. The presence of inhibitors in 2M HCl solution increases the value of the activation energy of corrosion process. The negative value of the free energy of adsorption (ΔG^*) indicates the spontaneous occurrence of adsorption on the metallic surface. The inhibitors TBP and TOPO acted as anodic inhibitors by the formation of Fe⁺²-TBP and Fe⁺²-TOPO complexes, respectively. The combinations (TBP + Zn⁺² ions).

(TBP + Mg⁺² ions), (TOPO + Zn⁺² ions) and (TOPO + Mg⁺² ions) acted as mixed inhibitors.

Key words: corrosion, corrosion inhibition, carbon steel, inhibitors and organo-phosphorus compounds.

Supervisor:

Prof. Dr. Said A/El Rahman Mostafa Salih

S. A. Mostafa

Prof. Dr. Rifaat Hassan Hilal

Chairman of Chemistry Department

Faculty of Science-Cairo University

Acknowledgement

No words can ever express my sincere gratitude for all the people who contributed to the fulfillment of this work.

I would like to express my hearty thanks for my supervisor, **Prof Dr. Said**Abd El-Rahman, Mostafa, Professor of Physical Chemistry, Faculty of

Science, Cairo University, for his fatherly guidance, valuable supervision,

great effort in suggesting the point investigated, his personal interest in my

work and discussion of the obtained results. The guidance and support given

by him were indispensable to the completion of this work

My indebtedness and gratitude are also to **Prof. Dr. Amin M. Baraka**Professor of Physical Chemistry, Faculty of Science, Cairo University, for his valuable discussions and continuous encouragement, without which this work has not been done.

Waleed Samy Abd El-Latif Hassan

Contents

		Page
	Abstract	
	Acknowledgment	
I.	Chapter One	
	Aim and scope of the present work	1
	Introduction	4
II.	Chapter Two	•
	Experimental	65
	Weight Loss (Tables & Curves)	68
	Corrosion Penetration(Tables & Curves)	194
	Linear Polarization (Tables & Curves)	209
	Electrochemical Impedance Spectroscopy (Tables & Curves)-	236
III.	Chapter Three	
	Discussion	257
IV.	Summary	283
V.	References	292
VI.	Arabic Summary	47L

chapter on

Aim and scope of the present work

The carbon steel is used as essential parts in the manufacturing of installation used in the petroleum industry. These installations may be subjected to corrosion in different media. The use of inhibitors is one of the most practical methods for the protection against metallic corrosion, especially in acidic media. Hydrochloric acid is often used in pickling of steel and ferrous alloys. Inhibitors find application in pickling, cleaning of boilers, acidification of oil wells, ...etc. Organic compounds containing both phosphorus and oxygen atoms are of particular interest as they give good inhibition efficiencies.

The present work is devoted to the study of the corrosion behavior of carbon steel in hydrochloric acid solutions and its inhibition by organ-phosphorus compounds and some inorganic additivies in combination with these organo-phosphorus compounds.

The organ-phosphorus compounds are: Tri-n-Butyl Phosphonate (TBP) with molecular formula [CH₃(CH₂)₃O]₃P(O) and Tri-n-Octyl Phosphine Oxide (TOPO) with molecular formula [CH₃(CH₂)₇]₃P(O). The inorganic additives are: Zinc sulphate heptahydrate (ZnSO₄.7H₂O) and magnesium chloride hexahydrate (MgCl₂.6H₂O).

The techniques of measurements used in this study are: 1- weight loss measurements, where the weight loss of the carbon steel coupons was determined in absence and in presence of different concentrations of inhibitors (TBP) or (TOPO) and the combination with Zn⁺² or Mg⁺² ions at different temperatures. From these measurements the corrosion rate (R_w, mpy) is determined. From the

values of R_w the inhibition efficiencies (I.E %) and surface coverage (0) are calculated. 2- Linear polarization measurements which carried out in the range of -20 mV to +20 mV. From the plots of E versus i, the linear polarization resistances (R_P) are determined. The values of inhibition efficiency (I.E %) was also determined for the different inhibitor and their combinations. 3-Electrochemical impedance spectroscopy which are shown as Nyquist plots. From these measurements the values of charge transfer (Rt) and the capacity of the double layer (C_{dl}) are calculated for the carbon steel electrodes in different operating conditions. From the values of R. the values of inhibition efficiency are calculated for the investigated inhibitors. 4- Corrosion penetration (CP) and parabolic rate constant (k) for the carbon steel coupons are calculated under the different operating conditions. The values of inhibitions efficiencies (I.E %) calculated from the values of CP and k for the different inhibitors and their combinations with Zn⁺² and Mg⁺² ions.

From the above mentioned measurements the type of adsorption isotherm is elucidated. This is done from the experimental relationship of the surface coverage (θ) and concentration (C).

From the results of weight loss measurements the values of activation energy of corrosion (E^*_{corr}) of carbon steel in 2M HCl solution in absence and in presence of different inhibitors (TBP) or (TOPO) and their combinations with Zn^{+2} and Mg^{+2} ions. Also, from these measurements, the values of enthalpy of adsorption, ΔH^* , are calculated to elucidate the type of adsorption (physical or chemical) of the inhibitors on the carbon

steel. Also, the values of ΔG^* are calculated to elucidate the spontaneity of the adsorption process. The values of ΔS^* are calculated from weight loss measurements.

The potentiostatic polarization measurements were carried out to elucidate the action of the inhibitors and their combination on the corrosion process of the carbon steel in 2M HCl solution.