

Ain Shams University Faculty of Science Biochemistry Department

Association between Genetic Polymorphisms and Coronary Artery Disease in Egyptian Patients

A THESIS

Submitted for the degree of Doctor of Science
As Fulfillment for the Requirements of the Doctor Degree (Ph.D.) of Science in
Biochemistry

By

Lamiaa Mageed Sayed Ibrahim

Associate Researcher in the National Research Centre (B.Sc.) Biochemistry (2005), (M.Sc.) Biochemistry (2011)
Biochemistry Department,
Faculty of Science, Ain Shams University

Supervisors

Prof. Dr. Ibrahim Hassan Borai

Professor of Biochemistry
Biochemistry Department
Faculty of Science
Ain Shams University

Assist. Prof. Dr. Nahla Samir Hassan

Assistant Professor of Biochemistry
Biochemistry Department
Faculty of Science
Ain Shams University

Prof. Dr. Esmat Ashour Wahba

Professor of Biochemistry Biochemistry Department National Research Centre, Dokki, Giza, Egypt

Prof. Dr. Olfat Gamil Shaker

Professor of Medical Biochemistry and Molecular Biology Biochemistry Department Faculty of Medicine Cairo University

Prof. Dr. Mohamed Ibrahim El-Badrawy

Heart Consultant of the National Heart Institute
The National Heart Institute
Giza, Egypt

Approval Sheet of Submission

Title of PhD Thesis:

"Association between Genetic Polymorphisms and Coronary Artery Disease in Egyptian Patients"

Name of the Candidate: Lamiaa Mageed Sayed Ibrahim

This thesis has been approved for submission

BY SUPERVISORS

Prof. Dr. Ibrahim Hassan Borai

Professor of Biochemistry Biochemistry Department Faculty of Science Ain Shams University

Prof. Dr. Esmat Ashour Wahba

Professor of Biochemistry Biochemistry Department Genetic Engineering and Biotechnology Division National Research Centre

Prof. Dr. Olfat Gamil Shaker

Professor of Medical Biochemistry and Molecular Biology Biochemistry Department Faculty of Medicine Cairo University

Assist. Prof. Dr. Nahla Samir Hassan

Assistant Professor of Biochemistry Biochemistry Department Faculty of Science Ain Shams University

Prof. Dr. Mohamed Ibrahim El-Badrawy

Heart Consultant of the National Heart Institute The National Heart Institute Giza, Egypt

ACKNOWLEDGEMENT

First and foremost, I am grateful and thanks to **ALLAH** for most merciful and most gracious who gave me the ability to carry out this work and who made all things possible.

I would like to acknowledge and extend my heartful gratitude to **Prof. Dr.**Ibrahim Hassan Borai, professor of Biochemistry, Biochemistry Department,

Faculty of Science, Ain Shams University for her vital encouragement, fruitful suggestions, support, and I wish gratefully to express my appreciation to his valuable advice and guidance to complete this work.

I would like to express my deepest gratitude and appreciation to **Prof. Dr. Esmat Ashour Wahba**, Professor of Biochemistry, Biochemistry Department,
Genetic Engineering and Biotechnology Division, National Research Centre for
her valuable advice in science discussion, generous supervision, vital
encouragement, support and guidance in various ways from the very early stage
of this research as well as giving me extraordinary experiences throughout the
work. I am grateful in every possible way for her wise opinions and critical
comments throughout the whole study and work.

Also, I would like to acknowledge and extend my deep gratitude to **Prof. Dr. Olfat Gamil Shaker,** professor of Medical Biochemistry, Faculty of Medicine, Cairo University for her vital encouragement, fruitful suggestions, support, and I wish gratefully to express my appreciation to her valuable advice and guidance to complete this work.

I gratefully acknowledge and express my deepest appreciation to **Prof. Dr. Olfat Mohammed Fawzi,** Professor of Biochemistry, Biochemistry

Department, Genetic Engineering and Biotechnology Division, National

Research Centre for her encouragement, and support to complete this work.

My special thanks go to Assistant Prof. Dr. Nahla Samir Hassan, Assistant professor of Biochemistry, Biochemistry Department, Faculty of Science, Ain Shams University for her advice in science discussion and the great help and support to complete this work.

My special thanks for **Dr. Mohamed Ibrahim El-Badrawy**, Heart Consultant of the National Heart Institute, The National Heart Institute for his advice and the great help in collection of samples and his support throughout the whole study and work.

It is pleasure to express my gratitude wholeheartedly to my family, my beloved parents, especially to my lovely Mother, is the one who sincerely raised me with her caring and gently love, and many thanks for her vital encouragement, unlimited help, guidance and thoughtful support in various ways. I am indebted to her more than she knows. Therefore, I would also thank my brother Mohammed for his encouragement, help and support. Furthermore, to my uncle Mohammed Hayaty for the great help and support.

Finally, I would like to thank my colleagues and my patients and thanks to everybody made any effort for this work to success and to be a reality, as well as expressing my apology that I could not mention personally.

ABSTRACT

Lamiaa Mageed Sayed Ibrahim

"Association between Genetic Polymorphisms and Coronary Artery Disease in Egyptian Patients"

PhD, Biochemistry Department, Faculty of Science, Ain Shams University

Aim of the study: To evaluate the level of IL-18 as a pro-inflammatory cytokine and to investigate the potential associations of the two IL-18 promoter gene polymorphisms at positions (-607C/A) and (-137G/C), ACE (I/D) and AGT (M235T) gene polymorphisms with coronary artery disease.

Subjects: A total of one hundred and twenty Egyptian patients (Sixty with CAD and sixty without CAD) and fifty healthy control subjects were included in the study.

Methods: Genotyping of IL-18 promoter gene at (-607C/A) and (-137G/C) regions, ACE (I/D)and AGT (M235T) were analyzed by Polymerase chain reaction technique (PCR), Lipid profiles (total cholesterol, triglyceride, HDL-C) were measured by enzymatic colorimetric method. Serum IL-6 and IL-18 levels were determined using ELISA.

Results: Our data indicated that IL-18 (137 GG) was significantly associated with CAD, whereas a non- significant association was observed in IL-18 (607C/A) between cases and controls. Also, there was a significant association between ACE (DD) and AGT (TT) polymorphisms and CAD. Furthermore, a significant association between lipid profiles (TC, TG and LDL-C) and risk for CAD was occurred. Elevation of serum IL-6 and IL-18 levels was observed in CAD patients.

Conclusion: Our study suggests that an association between IL-18 (137G/C) promoter gene polymorphism, ACE (I/D) and AGT (M235T) polymorphisms and susceptibility to CAD in Egyptian patients. The present study showing a strong association between dyslipidemia as an important risk factor of atherosclerosis and CAD.A markedly high level of IL-6 and IL-18 in patients with CAD, based on which suggests that IL-6 and IL-18 may be served as susceptibility biomarkers in the pathogenesis of atherosclerosis in CAD patients.

CONTENTS

Page		
LIST OF A	BBERVIATIONS	Ш
LIST OF T	LIST OF TABLES	
LIST OF F	IGURES	VIII
INTRODU	ICTION AND AIM OF THE WORK	1
- IN7	FRODUCTION	1
- AIN	И OF THE WORK	5
REVIEW (OF LITERATURE	7
1. CORO	NARY ARTERY SYSTEM	7
1.1.	Morphology of the Normal Artery	8
1.2.	Coronary Artery Disease	10
1.3.	Pathogenesis of Atherosclerosis	12
1.4.	Progression of Atherosclerosis	15
1.5.	Prevalence of coronary Artery Disease	16
1.6.	Risk Factors Influencing Coronary Artery Disease	20
1.7.	Clinical Manifestations of Coronary Artery Disease	30
1.8.	Clinical Diagnosis of Coronary Artery Disease	32
2. Inflammatory Biomarkers in Coronary Artery Disease		36
	Genetic Architecture of Coronary Artery Disease	51
3.1. In	terleukin-18 (IL-18) gene	52
3.2. Renin-Angiotensin-Aldosterone System (RAAS)		63
3.2	2.1. Angiotensin Converting Enzyme (ACE)	64
	3.2.2. Angiotensinogen Gene (AGT)	70
SUBJECTS	AND METHODS	77
1. Subj	ects	77
2. Met	hods	80
A) B	A) Biochemical Analyses	
B) Molecular Analyses		94
3. Statistical Analysis		105
RESULTS		107
DISCUSSION		143

SUMMARY AND CONCLUSIONS	161
REFERENCES	167
ARABIC SUMMARY	

LIST OF ABBERVIATIONS

ACE Angiotensin Converting Enzyme

ACS Acute Coronary Syndrome

AGT Angiotensinogen

AMI Acute Myocardial Infarction

Ang I Angiotensin I
Ang II Angiotensin II
AR Aortic Root

BP Blood Pressure

CAC Coronary Artery CalciumCAD Coronary Artery Disease

cAMP Cyclic Adenosine Monophosphate

CHD Coronary Heart Disease

CRP C -Reactive Protein

CVDs Cardiovascular Diseases

DBP Diastolic Blood Pressure

DM Diabetes Mellitus

DN Diabetic NephropathyDNA Deoxyribonucleic Acid

EF Electrocardiogram
Eiection Fraction

EH Essential Hypertension

ELISA Enzyme-Linked Immunosorbent Assay

FH Familial Hypercholesterolemia

FS Fractional Shortening

H4TF-1 Histone 4 Transcription Factor-1

HDL-C High Density Lipoprotein-Cholesterol

HF Heart Failure

HRV Heart Rate Variability

hs- CRP High Sensitivity C -Reactive Protein

HTN Hypertension

ICAM-1 Intracellular Cell Adhesion Molecule-1

IDL-C Intermediate-Density Lipoprotein Cholesterol

IFN- γ Interferon-γ

IHD Ischemic Heart Disease

IL-1 Interleukin-1IL-10 Interleukin-10IL-18 Interleukin-18IL-6 Interleukin-6

IMT Intima Media Thickness

LA Left Atrium

LCA Left Coronary Artery

LDL-C Low Density Lipoprotein-Cholesterol

Lp-PLA-2 Lipoprotein-Associated Phospholipase A2LVEDD Left Ventricular End Diastolic Diameter

LVEF Left Ventricular Ejection Fraction

LVESD Left Ventricular End Systolic Diameter

LVH Left Ventricular Hypertrophy

LVPWT Left Ventricular Posterior Wall ThickeningLVSWT Left Ventricular Systolic Wall ThickeningMcp-1 Monocyte Chemoattractant Protein-1

MI Myocardial Infarction

MMPs Matrix Metalloproteinases

MPO Myeloperoxidase

MRI Magnetic Resonance Imaging

MRP8/14 Myeloid Related Protein 8/14 Complex

MUGA Multigated Acquisition Scans

NLRP3 Nucleotide-Binding Domain And Leucine-

RichRepeatPyrinContainingProtein-3

NO Nitric Oxide

ox-LDL Oxidized LDL

PAD Peripheral Artery Disease

PAI-1 Plasminogen Activator Inhibitor-1
PCAD Premature Coronary Artery Disease

PCR Polymerase Chain Reaction

PCR-RFLP Polymerase Chain Reaction Restriction Fragment Length

Polymorphism

PCR-SSP Polymerase Chain Reaction -Specific Sequence Primer

PIGF Placental Growth Factor

PTX3 Pentraxin-3

RAAS Renine Angiotensine Aldosterone System

RAS Renin–Angiotensin System

RNA Ribonucleic Acid

ROC Receiver Operating Characteristics

ROS Reactive Oxygen Species

RV Right VentricleRV Right VentricularSAA Serum Amyloid A

SBP Systolic Blood pressure

sCD40L Soluble CD40 LigandSD Standard Deviation

SNPs Single Nucleotide Polymorphisms

STEMI Segment Elevated Myocardial Infarction

T2DM Type 2 Diabetes Mellitus

TC Total Cholesterol

TG Triglyceride

TNF- α Tumor Necrosis Factor Alpha

Tnl Troponin-l

TOE Transoesophageal Echocardiography

UA Unstable Angina

VCAM-1 Vascular Cell Adhesion Molecule- 1

VLDL-C Very Low Density Lipoprotein-Cholesterol

LIST OF TABLES

		Page
Table (1)	The Epidemiologic Transition for Cardiovascular Disease	17
Table (2)	Demographic data of patients with and without coronary artery disease	108
Table (3)	Biochemical characteristics of patients with and without coronary artery disease and control groups	110
Table (4)	Frequency of samples detected by ELISA for serum IL-6 Level	112
Table (5)	Percent sensitivity, specificity, positive and negative predictive values (PPV, NPV), and accuracy of serum IL-6 level (pg/ml) in coronary artery disease	
Table (6)	Frequency of samples detected by ELISA for serum IL-18 Level	114
Table (7)	Percent sensitivity, specificity, positive and negative predictive values (PPV, NPV), and accuracy of serum IL-18 level (pg/ml) in coronary artery disease	
Table (8)	Genotype distribution and allele frequencies of (607C/A) polymorphism in IL-18 gene for patients with and without CAD and control groups	
Table (9)	Genotype distribution and allele frequencies of (137G/C) polymorphism in IL-18 gene for patients with and without CAD and control groups	
Table (10)	Genotype distribution and allele frequencies of (I/D) polymorphism in ACE gene in patients with and without CAD and control groups	
Table (11)	Genotype distribution and allele frequencies of M235T polymorphism in AGT gene in patients with and without CAD and control groups	

Page

Table (12)	The combined effect of ACE (I/D) and AGT (M235T) genotype frequencies in patients with and without coronary artery disease	125
Table (13)	The combined effect of ACE I/D, IL-18 607C/A, and IL-18 137G/C genotype frequencies in patients with and without Coronary artery disease	127
Table (14)	The combined effect of ACE I/D, AGT M235T, IL-18 607C/A, and IL-18 137G/C genotype frequencies in patients with and without Coronary artery disease	129
Table (15)	Clinical and Biochemical characteristics of patients with and without coronary artery disease with different 607C/A genotypes in IL-18 gene	131
Table (16)	Clinical and Biochemical characteristics of patients with and without coronary artery disease with different 137G/C genotypes in IL-18 gene	134
Table (17)	Clinical and Biochemical characteristics of patients with and without coronary artery disease with different I/D genotypes in ACE gene	137
Table (18)	Clinical and Biochemical characteristics of patients with and without coronary artery disease with	139

LIST OF FIGURES

		Page
Figure (1)	The Anatomy of the Coronary Arteries	7
Figure (2)	Morphology of Normal Artery	8
Figure (3)	Atherosclerotic Lesion in a Human Artery	11
Figure (4)	Normal Heart, normal artery and artery with Plaque.	13
Figure (5)	Atherosclerotic Plaque Formation	14
Figure (6)	Two types of vascular pathology in large and small arteries: Atherosclerosis (Left) and Arteriosclerosis (Right)	15
Figure (7)	Phases of lesion development	16
Figure (8)	Distribution of Major Causes of Death Including CVDs	18
Figure (9)	Proportion of all deaths due to CHD, among men (A) and women (B)	18
Figure (10)	Angina Pectoris or (chest pain) as a symptom of coronary artery disease	31
Figure (11)	IL-6 in inflammation	47
Figure (12)	IL-18 and plaque formation	49
Figure (13)	IL-18 gene located on Chromosome 11 (11q23.1)	54
Figure (14)	Production of IL-18 by caspase-1	55
Figure (15)	IL-18 signal transduction	57
Figure (16)	IL-18 gene and promoter polymorphism	60
Figure (17)	Renin Angiotensin Aldosterone System (RAAS)	63
Figure (18)	ACE distribution	65
Figure (19)	Angiotensin converting enzyme structure	65
Figure (20)	Diagram of the ACE Gene Illustrating the Insertion/Deletion Polymorphism	66

Page		
Figure (21)	I and D alleles of angiotensin converting enzyme gene	66
Figure (22)	Angiotensinogen gene localization on chromosome 1 (1q42.2)	70
Figure (23)	Schematic Representation of Human AGT Gene, and Protein	72
Figure (24)	Polymorphism in the angiotensinogen gene (M235T)	73
Figure (25)	Serial dilution of IL-6 standard	87
Figure (26)	Standard curve of human serum Interleukin-6 (IL-6)	89
Figure (27)	Serial dilution of IL-18 standard	91
Figure (28)	Standard curve of human serum Interleukin-18 (IL-18)	93
Figure (29)	Biochemical characteristics of patients with and without coronary artery disease and control groups	110
Figure (30)	Serum IL-6 level in all different studied groups	112
Figure (31)	Receiver operating characteristic (ROC) curve analysis for serum IL-6 level by ELISA in coronary artery disease group versus patients without coronary artery disease	113
Figure (32)	Serum IL-18 level in all different studied groups	115
Figure (33)	Receiver operating characteristic (ROC) curve analysis for serum IL-18 level by ELISA in coronary artery disease group versus patients without coronary artery disease	115
Figure (34)	Genotype distribution and allele frequencies of (607C/A) polymorphism in IL-18 gene for patients with and without CAD and control groups	118
Figure (35)	Genotype distribution and allele frequencies of (137G/C) polymorphism in IL-18 gene for patients with and without CAD and control groups	120
Figure (36)	Genotype distribution and allele frequencies of (I/D) polymorphism in ACE gene in patients with and without CAD and control groups	122

		Page
Figure (37)	Genotype distribution and allele frequencies of M235T polymorphism in AGT gene in patients with and without CAD and control groups	124
Figure (38)	Clinical and Biochemical characteristics of patients with and without coronary artery disease with different 607C/A genotypes in IL-18 gene	132
Figure (39)	Clinical and Biochemical characteristics of patients with and without coronary artery disease with different 137G/C genotypes in IL-18 gene	135
Figure (40)	Clinical and Biochemical characteristics of patients with and without coronary artery disease with different I/D genotypes in ACE gene	138
Figure (41)	Clinical and Biochemical characteristics of patients with and without coronary artery disease with different M235T genotypes in AGT gene	140
Figure (42)	Agarose gel electrophoresis of IL-18 (607C/A) polymorphism	141
Figure (43)	Agarose gel electrophoresis of IL-18 (137G/C) polymorphism	141
Figure (44)	Agarose gel electrophoresis of ACE (I/D) polymorphism	142
Figure (45)	Agarose gel electrophoresis of ACE-Specific polymorphism	142
Figure (46)	Agarose gel electrophoresis of AGT (M235T) products after digestion with <i>SfaNI</i> restriction enzyme	142