

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

£090

PRELIMINARY STUDIES OF THE POTENTIAL EFFECTS OF DIFFERENT ORGANIC RESIDUES COMBINATIONS ON NFIXATION, YIELD OF SOYBEAN AND SOIL SUSTAINABILITY

By

Nasser Ibrahim Ali Talha

B.Sc. Agric., Soil Science, Kafr El-Sheikh, Tanta University, 1986

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree

of

MASTER OF SCIENCE

In

Soil Science

Soil Department, Faculty of Agriculture Kafr El-Sheikh, Tanta University

1997

APPROVAL SHEET

Thesis Entitled PRELIMINARY STUDIES OF THE POTENTIAL EFFECTS OF DIFFERENT ORGANIC RESIDUES COMBINATIONS ON N-FIXATION, YIELD OF SOYBEAN AND SOIL SUSTAINABILITY

Presented By

Nasser Ibrahim Ali Talha.

For the Degree of M.Sc. in Soil Science

This	thesis has been approved by	< A	-Gahoan
1-	Prof. Dr. Saber A. Gaheen		
	Prof. of Soil Sciences and Dean of Facu	ilty of Agricul	ture,
	Kafr El-Sheikh, Tanta University	. 1	
2-	Prof. Dr. Mohamed H. El-H	[alfawi,	1.17 to the form
	Prof. of Soil Science, Soil and Water S	SciencesDepar	rtment,
	Faculty of Agriculture, Alexandria Un		^
	Table of Lagrange		U & O GADAIN
3-	Prof. Dr. Taha M. El-Essav	V1	**************************************
	Prof. of Soil Sciences Soil Sciences De	epartment,	^
	Faculty of Agriculture Kafr El-Sheik	h, Tanta Univ	ersity.
	Dr. Mohamed A. El-Kamm	ab M A	El-Kammab
4-	Dr. Mohamed A. El-Kamin	1311 4.3.5.3.4	•••••
	Associate Prof. of Soil Science, Soil	2016110@Dcha	tilloni,
	Faculty of Agriculture, Kafr El-Sheik	th, Tanta Univ	ersity.
Dat	e:15 / 4 / 1997.		(Committee in Charge)
240			
Do	posited in the Faculty Library	Date	Librarian
וייטע	JOSTOG III mio x mammil — 2		

Advisor's Committee

1- Prof. Dr. Taha M. El-Essawi

Prof. of Soil Science, Department of Soil Science,
Faculty of Agriculture, Kafr El-Sheikh, Tanta University.

2- Prof. Dr. Fawzy M. Naim

Prof. of Agronomy and Head of Agricultural Extension Sector, Ministry of Agriculture.

3- Dr. Mohamed A. El-Kammah

Associate Prof. of Soil Science, Department of Soil Science, Faculty of Agriculture, Kafr El-Sheikh, Tanta University.

ACKNOWLEDGMENT

The author wishes to express his profound gratitude and sincere appreciation to **Prof. Dr. Taha M. El-Essawi**, Dept. of Soil Sci. Faculty of Agric. Kafr El-Sheikh, Tanta Univ. for suggesting the problems of study, careful supervision and keen guidance.

Deep gratitude is also due to **Dr. Mohamed A. El-Kammah**, Associate Prof., Dept. of Soil Sci., Faculty of Agric., Kafr El-Sheikh, Tanta Univ. for suggesting the research points sincere supervision, objective criticism, continuous help and keen guidance throughout the work.

Thanks are also due to **Prof. Dr. Fawzy Naim Mahrous**Prof. of Agronomy, and Head of Agricultural Extension

Sections, Ministry of Agriculture for supervision and help
throughout the work.

Thanks are presented to the staff members of Soil Chemical and Physical Res. Dept., Sakha Agric. Res. Station for their support throughout the achievement of this investigation.

CONTENTS

1.	INTRODUCTION				
2.	REVIEW OF LITERATURE	.3			
	2.1. General considerations: Organic manures, soil organic				
	matter and features of soils of Egypt				
	2.1.1. Sustainable agriculture: Definitions and				
	measurements				
	2.2.2. Biological nitrogen fixation systems				
	2.2. Effect of organic matter application on soil characteristics	15			
	2.2.1. Physical properties	15			
	2.1.1.1. Aggregation parameters	15			
	2.2.2. Chemical properties	21			
	2.2.2.1. Effect of organic matter application on soil pH				
	2.2.2.2. Effect of application of organic manures on soil				
	organic matter	23			
	2.2.2.3. Effect of organic matter application on cation				
	exchange capacity				
	2.2.2.4. Effect of organic matter application on soil				
	nitrogen				
	2.2.2.5. Effect of organic matter application on soil	22			
	phosphorous				
	2.2.2.6. Effect of organic matter application on soil				
	potassium				
	2.2.2.7. Effect of organic mater application on soil				
	biological characteristics				
	2.3. Effect of organic matter application on crop production	40			
	2.4. Effect of organic matter application on content of macro-	15			
	and micro elements of plants	4)			
	2.5. Effect of organic matter application on total and	1 Q			
	available heavy metals in soils	40			
3.	MATERIALS AND METHODS	50			
	3.1. Characterization of experimental soils				
	3.2. Anaerobic digested sludge	50			
	3.3. Farm residues and municipal refuses	53			
	3.4. Seeds of soybean				

		3.4.1. Bradyrhizobium japonicum strains used	53
	2.5	Fertilization treatments (NPK)	53
	3.J.	Installation of experiments	55
	3.0.	3.6.1. Mixing ratios of rural wastes with sewage sludge	55
		3.6.2. Inoculation of soybean seeds	56
	3 7	Pot experiments	56
	5.7.	3.7.1. Experimental design	57
		3.7.2. Grains of wheat (<i>Triticum aestivum</i> , var Sakha 8)	59
	3 8	Methods of analysis	
		3.8.1. Physical analysis of soils	60
		3.8.2. Chemical analysis of soils	60
		3.8.3. Chemical analysis of plants	
4.		SULTS AND DISCUSSION	63
	4.1.	Potential effect of added organic materials on soybean	
		biological yield, yield component and biological N2-fixation	63
	4.2.	Interaction effect between added organic materials and	72
		some soybean nutrients content	13
		4.2.1. Effect of organic materials on some macronutrients	72
		content	13
		4.2.2. Effect of organic materials on some micronutrient and heavy metal content	74
	4.2	Interrelationships between added organic materials and	, ,
	4.3.	some soil properties	77
		4.3.1. Some soil physical properties (aggregation	
		parameters)	77
		4.3.2. Some soil chemical properties	87
		4.3.3. Some soil macronutrients content	96
		4.3.4. Some soil micronutrients and heavy metals content	
	4.4.	Residual effect of added organic materials on biological	
		yield and yield component of cultivated wheat after	
		soybean	98
5.		MMARY 1	07
6.	RE	FERENCES 1	.12
AR	ABIC	CSUMMARY	

INTRODUCTION

1. INTRODUCTION

The agricultural world including Egypt, faces an unprecedented: how to achieve long term sustainability in the supply of adequate levels of food and fiber for domestic and international markets and humanitarian aid, without degrading the natural environment or resource base, including humans and their communities, upon which agriculture depends. It is the dual nature of this challenge that makes the current situation so daunting. Scientific organic farming or biologically based farming systems or alternative agriculture that are at once productive, profitable and sustainable for the indefinite future should be adopted (Youngberg, 1992).

In Egypt, as any arid or semi-arid region, soil content of organic matter is generally low, although, it is well known fact that soil productivity is significantly affected by the organic matter content due to the unlimited beneficial effects on soils and field crops. Abdel-Ghaffar (1982) stated that the common range of organic matter in cultivated clay soils is between 1% and 2.5% while in the calcareous and sandy desert soils it is usually less than 0.5%.

Application of crude or composted farm residues, municipal and industrial non-hazardous wastes to agricultural soils is of a special importance to increase soil organic matter and soil sustainability. It was reported that the total amounts of municipal waste only collected and disposed in urban areas in Egypt is roughly estimated at 5.6 millions or 15.200 tons/day although solid waste collection efficiency varies from 10-18% (Egyptian Environ. Affairs Agency, 1992). In addition to waste disposal considerations, the main advantage of applying organic residues

to agricultural land, is that residues contain N, P, K and trace elements and thus serves a substitute for conventional fertilizer materials.

On the light of the above mentioned informations, so, the objective of this study was to identify the proper management of some organic farm residues and sewage sludge, alone or in mixtures, that (1) maximize utilization of rural and urban wastes to improve soil fertility and productivity. (2) reduce the environmental hazard impact of anaerobic digested sewage sludge throughout mixing with cheap materials (3) enhance or degrade sustainability of soil characteristics, symbiotic N-fixation and crop yield of soybean with/without mineral fertilizers and (4) reduce or replace mineral fertilizers, i.e., inorganic N and increase residue and fertility inputs.

REVIEW OF LITERATURE