Single Nucleotide Polymorphism in the MTHFR Gene and Its Relation to Hypertension in Obese Children

AThesis

Submitted for Partial Fulfillment of the Master's degree in Pediatrics

By

Mohammed Saad Mohammed El dabdob

M.B., B.Ch. Ain Shams University

Supervised By

Ass. Prof. Wessam Ahmed Ibrahim Ahmed

Assistant Professor of Pediatrics Faculty of Medicine, Ain Shams University

Ass. Prof. Alaa Youssef Ahmed

Assistant Professor in Pediatrics Faculty of Medicine, Ain Shams University

Ass. Prof. Dina Ahmed Soliman

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2018

سورة البقرة الآية: ٣٢

Acknowledgment

Before all, Thanks to Allah, The Most Kind and The Most Merciful.

I would like to express my profound gratitude to Assistant Prof. Dr. Wessam Ahmed Ibrahim Ahmed, Assistant Professor of Pediatrics, Faculty of Medicine- Ain Shams University, for her valuable help, assistance, encouragement and supporting me through devoting her time to facilitate the production of this work.

Also I'm deeply grateful to Assistant Prof.

Or. Alaa Youssef Ahmed, Assistant Professor of Pediatrics, Faculty of Medicine- Ain Shams University, for her most valuable advices and support all through the whole work and for dedicating much of her precious time to accomplish this work. I really have the honor to complete this work under her generous supervision.

I am also grateful to Assistant Prof. Dr. Dina Ahmed Soliman, Assistant Professor of Clinical Pathology, Faculty of Medicine- Ain Shams University, for her unique effort, considerable help, assistance and knowledge she offered me throughout the performance of this work.

Last but not least, I can't forget to thank all members of my **Family**, for pushing me forward in every step in the journey of my life.

Mohammed Saad

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	
Introduction	
Aim of the Work	
Review of Literature	
Hypertension	4
Molecular Mechanisms of Hypertension	
Childhood Obesity	
Subjects and Methods	
Results	
Discussion	
Summary	107
Conclusion	
Recommendations	112
References	
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Pediatric Hypertension: Criteria Secondary Causes	
Table (2):	Classification of hypertension in channel and adolescents, with measure frequency and therapy recommendation	ement
Table (3):	Polymorphic Mutations in 5, Methylenetetrahydrofolate Reductase	
Table (4):	Classification of childhood weight	32
Table (5):	Shows the correlation between fluores signals and sequences in a sample	
Table (6):	Age data of the studied groups	73
Table (7):	Gender distribution of studied groups	73
Table (8):	Anthropometric measures of studied gro	oups 75
Table (9):	Laboratory characteristics among studied obese patients	
Table (10):	Fasting lipid profile among the studied patients	
Table (11):	Comparison between patients and corregarding gender distribution	
Table (12):	Comparison between patients and corregarding age	
Table (13):	Comparison between patients and corregarding anthropometric measures	
Table (14):	Comparison between patients and corregarding laboratory data	

List of Tables (Cont...)

Table No.	Title	Page No.
Table (15):	Comparison between The genotypic allelic frequencies among the studied graph $[n\ (\%)]$	roups
Table (16):	Correlation between genotype frequency puberty among the studied groups	•
Table (17):	Correlation between genotype frequency gender among studied groups	
Table (18):	Correlation between blood pressure gender among studied groups	
Table (19):	Correlation between blood pressure allele frequency among studied groups	
Table (20):	Correlation between blood pressure genotype (homozygous and heterozy among studied groups	gous)
Table (21):	Correlation between blood pressure puberty among studied groups	
Table (22):	Comparison between studied group regards allele frequency	
Table (23):	Multi-Regression analysis between percentile, onset of obesity and waist haratio among studied groups:	eight
Table (24):	Correlation between demographic data blood pressure among studied groups:	
Table (25):	Correlation between anthropon measures and blood pressure among st groups	udied
Table (26):	Correlation between blood pressure laboratory data among studied groups	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Diagnostic testing for mild-to-moder	
Figure (2):	Pediatric hypertension	12
Figure (3):	Work up and treatment of hypertension	n 17
Figure (4):	Homocysteine metabolism	22
Figure (5):	Potential mechanisms of homocyste induced oxidant stress	
Figure (6):	Prader-Willi syndrome with characterifacial features; early-childhood or obesity and short stature	nset
Figure (7):	Bardet-Biedl syndrome showing cen obesity and hypogonadism	
Figure (8):	MOMO syndrome showing macroceph obesity	-
Figure (9):	Cohen syndrome showing craniofa dysmorphism	
Figure (10):	A diagnostic approach to obe syndromes	-
Figure (11):	Medical complication of childhood obes	ity 46
Figure (12):	Gender distribution among stud	
Figure (13):	Correlation between blood pressure genotype frequency among stud groups.	died
Figure (14):	Correlation between blood pressure genotype (homozygous and heterozygous among studied groups	ous)

List of Figures (Cont...)

Fig. No.		Title			Page	e No.
Figure (15):	Correlation puberty amo		_			90
Figure (16):	Correlation	between SB	SP & We	ight.		96
Figure (1 7):	Correlation circumference				Waist	96
Figure (18):	Correlation circumference				-	97
Figure (19):	Correlation b	etween DBF	% Weig	sht		97
Figure (20):	Correlation circumference				Waist	98
Figure (21):	Correlation circumference				-	98
Figure (22):	Correlation b	etween SBP	& Fasti	ng in	sulin	99
Figure (23):	Correlation b	etween DBF	& Fast	ing In	sulin	99

List of Abbreviations

Abb.	Full term
ΛΛΡ	.American Association of Pediatrics
	.Angiotensin Convertase Enzyme Inhibitor
	· ·
	Angiotensin II Receptor Blockers
	.Arcuate Nucleus
	.Alstrom Syndrome
	.Bardet-Biedl Syndrome
	.BODY MASS Index
<i>BP</i>	
	.Calcium Channel Blockers
<i>CCK</i>	· ·
	.Congestive Heart Failure
<i>CKD</i>	.Chronic Kidney Disease
CVD	$. Cardiovas cular\ Disease$
<i>DBP</i>	.Diastolic Blood Pressure
<i>DMH</i>	.Dorsomedial Nucleus
<i>EPO</i>	. Erythropoiet in
<i>ESRD</i>	.Ends Stage Renal Disease
FDA	.Food and Drug Administration
FVa	.Factor V
<i>GH</i>	. Growth Hormone
GLP-1	.Glucagon-Like Peptide
Hcy	
HTN	
	Insulin Growth Factor 1
	.Lateral Hypothalamic Area
	Left Ventricular Hypertrophy
	Left Ventricular Mass Index
	.Mono Amine Oxidase Inhibitors

List of Abbreviations (Cont...)

Abb.	Full term
<i>MTHFR</i>	.Methylenetetrahydrofolate Reductase
	National High Blood Pressure Education Program
NSAIDs	Non Steroidal Anti Inflammatory Drugs
<i>OB</i>	.Obese
<i>OCP</i>	Oral Contraceptive Pills
<i>OW</i>	.Overweight
PVN	.Paraventricular Nucleus
QOL	Quality of Life
SBP	Systolic Blood Pressure
SES	.Socioeconomic Status
SNP	Single Nucleotide Polymorphism
<i>UTI</i>	Urinary Tract Infection
<i>VLEDS</i>	.Very Low Energy Diets
<i>VMH</i>	.Ventromedial Hypothalamic Nucleus

ABSTRACT

Our study revealed a highly statistically significant positive correlation between hypertension and MTHFR gene SNP.

Regarding the C667T polymorphism, a higher frequency was detected among obese hypertensive children (60%) than obese normotensive children (26.7%) with a highly significant difference between them (p = 0.009).

Genotypic analysis of the cases regarding C667T MTHFR revealed that 25 patients (35.7%) had genotype (CC), While 45 patients (64.3%) had mutant type, and 42 of them (60%) were heterozygous genotype (CT) and 3 (4.3%) were homozygous genotype (TT).

Keywords: Bardet-Biedl Syndrome - Angiotensin II Receptor Blockers - Congestive Heart Failure

INTRODUCTION

(n the past 2 decades there has been increased recognition of Let the importance of blood pressure (BP) measurement in the pediatric population particularly in relation to the rising prevalence of childhood obesity. However, the importance of high BP goes beyond its relation to obesity, because longitudinal studies reveal a relation between childhood BP and future cardiovascular risk factors in young adults, independent of body mass index (BMI) (LO et al., 2013).

The relationship between obesity and hypertension is well recognized. Overweight and obesity increase the risk of elevated blood pressure. The prevalence of hypertension was 2 to 6 fold higher in obesity than in normal weight crowd (Yin et al., 2012).

The prevalence of childhood obesity has increased markedly over the last 2 decades. This increase is associated with an increase in hypertension rates which could lead to atherosclerotic disease in adulthood. Primary hypertension in children has become increasingly common in association with other cardiovascular risk factors that include being overweight, insulin resistance, and dyslipidemia (Abolfotouh et al., 2011).

Methylenetetrahydrofolatereductase (MTHFR) is one of the key enzymes in folate metabolism that is essential for numerous cellular functions. The C677T polymorphism in the

coding region of human MTHFR gene that changes an alanine to a valine residue is a common single nucleotide polymorphism (SNP). Its polymorphic distribution varies greatly in different populations. This gene variant encodes a thermolabile form of MTHFR, which decreases the enzyme activity by approximately 35% in heterozygote (CT) and 70% in mutant homozygote (TT). The homozygous C667T in the MTHFR gene is reported to be associated with the risk of certain human diseases, including some cardiovascular disorders, cancers and neural tube defects (Yang et al., 2007).

AIM OF THE WORK

To assess the relationship between MTHFR gene polymorphisms and hypertension in obese children.

Chapter 1

Hypertension

ypertension is a major long-term health condition and is the leading cause of premature death among adults throughout the world, including both developed, developing, and lesser developed countries. Primary hypertension emerges from a complex inter-play of genetic, environmental, and behavioral factors. Owing to the hereditary component of hypertension, the disorder is considered to have its origins in the young. It is now established that hypertension is detectable in children and adolescents and is not uncommon (*Falkner*, 2010).

Obesity and hypertension are both common health problems in children and adolescents and, in concert with the increasing prevalence of obesity in children; pediatric hypertension has undergone an epidemiological shift. Among all the demographic and clinical factors analyzed, body mass index (BMI) has been most strongly associated with hypertension. Several studies have reported positive associations between obesity and elevated blood pressure and childhood obesity is often associated with the future development of hypertension (*Zhang*, 2011).

Definition:

Hypertension is defined as average systolic blood pressure (SBP) and/or diastolic blood pressure (DBP) that is greater than or equal to the 95th percentile for sex, age, and