Chemomodulatory effects of didox and resveratrol on herceptin cytotoxicity in breast cancer cells

Thesis

Submitted as Partial Fulfillment for the Requirements of the Doctor of Philosophy Degree in Pharmaceutical Sciences (Pharmacology and Toxicology)

By Ghada Adel Abdellatif Sherif

M.Sc. Pharmacology & Toxicology. Faculty of Pharmacy, Cairo University 2011
 B.Sc. Pharm. Sci. Faculty of Pharmacy, Ain-Shams University. 2000

Under the supervision of

Prof. Dr. Ashraf B. Abdel-Naim

Professor of Pharmacology and Toxicology,
Faculty of Pharmacy,
Ain-Shams University

Prof. Dr. Amani E. Khalifa

Professor of Pharmacology and Toxicology,
Faculty of Pharmacy,
Ain-Shams University
Seconded as strategic planning consultant at 57357 hospital.

Dr. Mariane G. Tadros

Associate Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain-Shams University

Dr. Ahmed M. Al-Abd

Lecturer of Pharmacology Pharmacology department, National Research Centre

Ain Shams University 2015

Acknowledgment

First of all and above all great thanks to ALLAh whose blessings on us can not be counted and by whose abundant grace this work has come to fruition.

I would like to express my deepest gratitude to Dr. Ashraf B. Abdel-Naim, Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain-Shams University, for his encouragement, keen supervision, and valuable advice. His generous remarks have shed a lot of light on my work and put me on the right track throughout the stages of this study. I have had the greatest opportunity to learn from him much more than just pharmacology.

I would like to present my sincere appreciation to Dr. Amani E. Khalifa, Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain-Shams University, seconded as strategic planning consultant at 57357 hospital, for her kind supervision, fruitful advices, valuable guidance and experience which she offered me in order to push me forward.

I am totally indebted to Dr. Mariane G. Tadros, Associate Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, for her keen supervision, enthusiasm, generous assistance and kind support. I appreciate every single single minute she spent to make my thesis come out in this fruitful way.

Words are not enough to express what I owe to Dr. Ahmed M. Al-Abd, Lecturer of Pharmacology, Pharmacology department, National Research Centre, for his kind supervision, valuable guidance, continuous efforts, fruitful advices which he offered me in order to push me forward.

A special word of thanks to Dr. Fahad A. Al-Abbasi, Assistant Professor of Biochemistry, Faculty of science, King Abdulaziz University, Saudi Arabia, for his valuable help in performing the immunocytochemical determination of HER-2 receptor expression.

A very sincere and special thanks, goes to my mom and dad whose continuous endless prayers and encouragement have always helped me to pursue my studies with enthusiasm.

No words can express my deep appreciation to my husband Mr. Amr Gamal for his endurance, patience and understanding. He has supported me all the way and never gave up on me.

Last but not least, I am sincerely grateful for all the members of the Pharmacology and Toxicology department, Faculty of Pharmacy Ain-Shams University for their kind help.

Ghada Adel Abdellatif

Contents

Subject	Page
List of Tables	i
List of Figures	ii
List of Abbreviations	iv
Introduction	
Breast cancer:	1
- Classification of breast cancer.	1
- Risk factors for breast cancer.	5
 Pathogenesis of HER-2 +ve breast cancer. 	11
 Targeted treatment of HER-2 +ve breast cancer. 	15
Herceptin	20
- Pharmaceutical information.	20
- Pharmacodynamics.	22
- Pharmacokinetics.	24
- Clinical indications.	25
- Adverse reactions.	26
• Resveratrol	30
- Pharmaceutical information.	30
- Pharmacokinetics.	31
- Pharmacodynamics.	32
• Didox	39
- Pharmaceutical information.	39
- Pharmacokinetics.	40
- Pharmacodynamics.	40
- Adverse effects.	43
Models of breast cancer cell lines	45
- Culture methods and xenografts.	45
Aim of the work.	49
Materials & methods	51
• Study design.	51
Materials.	56

Methods	
Standard operating procedures	67
- Cells and cell culture conditions.	67
- Maintenance of the human T47D and MCF-7 cell	
lines in the laboratory.	67
- Collection of cells by trypsinization.	68
- Counting of viable cells.	68
- Cryopreservation of cells.	69
I- Test for cytotoxicity	70
- Sulphorhodamine B (SRB) assay.	70
- Combination assessment.	73
II-Assessment of apoptosis key markers	74
- Gene expression analysis.	74
- Assessment of caspase-3 activity.	84
III- Immunocytochemical determination of HER-2	
receptor.	90
IV- Analysis of cell cycle distribution.	94
V- Determination of total protein by Lowry method.	96
VI- Statistical analysis.	99
Results.	100
Discussion.	134
Summary and conclusions.	138
References.	141
Arabic summary.	

List of Tables

Table	Title	Page
Table (i):	The distribution of ER, PR and HER-2 receptor in	
	different molecular subtypes of breast	
	cancer.	4
<i>Table (1):</i>	The viability dose response curves of HER, RES and	
	DID single exposure in T47D cell line.	101
<i>Table</i> (2):	Effect of RES and DID on the cytotoxicity parameters	
	of HER in T47D cell line.	104
<i>Table (3):</i>	Effects of RES and DID on the viability dose response	
	curve of HER in T47D cell line.	106
<i>Table (4):</i>	The viability dose response curves of HER, RES and	
	DID single exposure in MCF-7 cell line.	120
<i>Table</i> (5):	Effects of RES and DID on the cytotoxicity	
	parameters of HER in MCF-7 cell line.	123
<i>Table (6):</i>	Effects of RES and DID on the viability dose response	
	curve of HER in MCF-7 cell line.	125

List of Figures

Figure	Title	page
Figure (i)	Heterodimer formation of members of the HER family	
	and downstream signaling.	13
Figure (ii)	Targeted agents for HER-2 positive breast cancer.	19
Figure (iii)	Primary trastuzumab amino acid sequences.	21
Figure (iv)	A schematic diagram of trastuzumab.	21
Figure (v)	HER-2 signaling pathway.	22
Figure (vi)	Chemical structure of resveratrol.	30
Figure (vii)	Chemical structure of didox.	39
Figure (viii)	Different methods of cell cultures and xenografts.	48
Figure (ix)	Calibration curve of standard caspase-3.	89
Figure (x)	Calibration curve of standard bovine serum albumin.	98
Figure (1)	The viability dose response curves of HER (A), RES	
	(B) and DID (C) single exposure on T47D cell line.	102
Figure (2)	Effects of RES (A) and DID (B) on the viability dose	
	response curve of HER in T47D cell line.	107
Figure (3)	Effects of HER, RES, DID and their combination on	
	the expression of some apoptosis markers Bax (A),	
	Bcl-2 (B) and Bcl-xl (C) in T47D cell line.	109
Figure (4)	Effects of HER, RES, DID and their combination on	
	the activity of caspase-3in T47D.	112
Figure (5)	Effects of HER(B), RES (C), DID (D) and their	
	combination (E&F) on the cell cycle distribution in	
	T47D cells.	115

List of Figures (ctd.)

Figure	Title	page
Figure (6)	Effects of HER (B), RES (C), DID (D) and their	
	combinations (E&F) on the expression of HER-2	
	receptor in T47D cells.	118
Figure (7)	The viability dose response curves of HER (A), RES	
	(B) and DID (C) single exposure on MCF-7 cell line.	121
Figure (8)	Effects of RES (A) and DID (B) on the viability dose	
	response curve of HER in MCF-7 cell line.	126
Figure (9)	Effects of HER, RES, DID and their combination on	
	the expression of some apoptosis markers Bax (A),	
	Bcl-2 (B) and Bcl-xl (C) in MCF-7 cell line.	128
Figure (10)	Effects of HER(B), RES (C), DID (D) and their	
	combination ($E\&F$) on the cell cycle distribution in	
	MCF-7cells.	132

List of Abbreviations

<i>3D</i>	3 dimensional
ADCC	Antibody-dependent cellular
	cytotoxicity
Akt	Protein kinase B
AMPK	Adenosine monophosphate activated
	protein kinase
ANOVA	Analysis of variance
AR	Amphiregulin
ASCO	American society of clinical
	oncology
ATM	Ataxia telangiectasia mutated
Bak	BCL2-antagonist/killer 1
Bax	Bcl-2-associated X protein
Bcl-2	B cell lymphoma 2
Bcl-xl	B cell lymphoma extra large
BRCA1	Breast cancer 1 gene
BRCA2	Breast cancer 2 gene
BRIP1	BRCA1 interacting protein C-
	terminal helicase 1
BTC	Betacellulin
c-Cbl	Casitas B-lineage Lymphoma
CD 16, CD28, CD80	Cluster of differentiation molecule
CDK2	Cyclin dependent kinase 2
CHEK2	Check point kinase 2
CI	Combination index
c-kit	Stem cell factor receptor
CL	Light chain constant domain
COX-2	Cyclo-oxygenase 2
CSF	Cerebrospinal fluid
dATP	Deoxyadenosine triphosphate
dCTP	Deoxycytidine triphosphate
dGTP	Deoxyguanosine triphosphate
DID	Didox
DM1	Derived from maytansine
DMSO	Dimethyl sulfoxide
DNA	Deoxy ribonucleic acid
dNTP	Deoxy nucleotide triphosphate pool

DRC	Dose response curve
dTTP	Deoxythymidine triphosphate
EDTA	Ethylenediaminetetraacetic acid,
EGF	Epidermal growth factor
ELISA	Enzyme linked immunosorbent assay
EPG	Epigen
EPR	Epiregulin
ER	Estrogen receptor
erbB	Erythroblast B
ERK	Extracellular signal-regulated kinase
ER-β	Estrogen receptor β
ET-1	Endothelin-1
GAPDH	Glyceraldehyde 3-phosphate
	dehydrogenase
HB-EFG	Heparin- binding EGF like ligand
HER	Herceptin
HER-2	Human epidermal growth factor
	receptor-2
HGF	Hepatocyte growth factor
HMG-Co A reductase	3-Hydroxyl 3- methyl glutaryl
	coenzyme A reductase
HRP	Horse radish peroxidase
HRT	Hormone replacement therapy
hsp90	Heat shock protein 90
IAPs	Inhibitor of apoptosis proteins
IC_{50}	Inhibitory concentration of 50%
IDC	Invasive ductal carcinoma
IFN-γ	Interferon-y
IGF	Insulin like growth factor
IgG	Immunoglobulin G
<i>IL-1β</i>	Interleukin 1β
ILC	Invasive lobular carcinoma
iNOS	Inducible nitric oxide synthase
MAPK	Mitogen activated protein kinase
MBC	Metastatic breast cancer
mTOR	Mammalian target of rapamycin
NAD	Nicotinamide adenine dinucleotide
NBS1	Nibrin
NF-κB	Nuclear factor kappa B

)	Nitric oxide
	viiric oxide
ρ_{S}	Not otherwise specified
	Neuregulin
	Optical density
	Per-os
i	Partner and localizer of BRCA2
	Poly (ADP-ribose) polymerase
GFR F	Platelet derived growth factor
	eceptor
BK F	Phosphatidylinositol-4,5-
	pisphosphate 3-kinase
	Protein kinase-C
I.	Progesterone receptor
	Phosphatase and tensin homolog
	53 upregulated modulator of
	poptosis
	Resistant fraction
	Reconstituted basement membrane
S	Resveratrol
A R	Ribonucleic acid
S R	Reactive oxygen species
i	Roswell Park Memorial Institute
n	nedium
K	Ribonucleotide reductase
K R	Receptor tyrosine kinase
-PCR R	Real time – polymerase chain
r	eaction
S	Standard error
\mathbb{R}^2	Silent Information Regulator Two
p	protein
B S	Sulphorhodamine B
S	Sarcoma tyrosine kinase
AT S	Signal Transducer and Activator of
7	Franscription
E 7	Fris borate/ EDTA
A 7	Trichloroacetic acid
I 7	Tyrosine kinase inhibitor
	Triple negative

TNF-α	Tumor necrosis factor- α
TRAIL-R1/DR4	TNF-related apoptosis-inducing
	ligand-receptor 1/ death receptor 4
TRAIL-R2/DR5	TNF-related apoptosis-inducing
	ligand-receptor 2/ death receptor5
TRAMP	Transgenic adenocarcinoma of the
	mouse prostate.
Tyr	Tyrosine
VEGF	Vascular endothelial growth factor
VH	Variable heavy chain
VL.	Variable light chain
WHO	World health organization
XIAP	X-linked IAP

Breast cancer

Breast cancer is considered a highly heterogeneous disease under several distinct viewpoints. Different types of this neoplasm exhibit variable histopathological and biological features, different clinical outcome and different response to systemic interventions (**Viale, 2012**).

Classification of breast cancer:

As a general rule, a suitable classification of any disease has to be scientifically sound, clinically useful, easily applicable and widely reproducible.

Several classifications are available for breast cancer from the more traditional histopathological subtypes to the newer molecular classes.

Histopathological classification:

The histopathological classification of breast carcinoma is based on the diversity of the morphological features of the tumors. It includes 20 major tumor types and 18 minor subtypes as endorsed by the WHO in 2003 (Sencha *et al.*, 2015).

According to this classification 70%–80% of all breast cancers will eventually belong to either one of the two major histopathological classes, namely invasive ductal carcinomas (IDCs) not otherwise specified (NOS) or invasive lobular carcinoma (ILC). This implies that this classification is unable to actually mirror the much wider heterogeneity of breast cancer, because it groups together, within the same class, tumors that have a very different biological and clinical profile. As a result, the histopathological classification has minimal prognostic and predictive implications, and its clinical utility is quite modest (Viale, 2012).