

Investigation of mineralogical and radiological content of rock samples, from Abu Zenima Region, South Sinai, Egypt

Thesis

Submitted in Partial Fulfillment for the requirements of the Degree of Master Science in Physics

By

Mourad Mahmoud Mourad (2017)

Supervisors

Prof. Dr/ Samir Usha El-KamisyProfessor of Nuclear Physics
Ain Shams University

Dr/Hala Mahmoud Hosny Assistant Professor of solid state Ain Shams University

*Or./Abdullah Sulaiman Abdullah*Assistant Professor of Nuclear Materials Authority

Ain Shams University Faculty of Science Physics Department

Degree: M.Sc. degree in Physics

Title: Investigation of mineralogical and radiological content of

rock samples, from Abu zenima region, south Sinai, Egypt.

Name: Mourad Mahmoud Mourad

Supervisors:	Approved
Prof. Dr. Samir Usha El-Kameesy	
Physics Department, Faculty of Science, Ain Shams University	
Dr/ Hala Mahmoud Hosny	
Physics Department, Faculty of Science, Ain Shams University	
Dr./ Abdullah Sulaiman Abdullah	
Geology Dep. Nuclear Materials Authority	

Ain Shams University Faculty Of Science Physics Department

Name: Mourad Mahmoud Mourad

Degree: Master

Department: Physics

Faculty: Science

University: Ain Shams

Registration Date: 10-2015

Grant Year: 2017

Acknowledgement

First of all praise be to **Allah** is the most gracious and merciful to express my deepest thanks and gratitude to my supervises. I admit that Allah has the largest favor in successfulness of this work.

I would like Prof. Dr. Samir Usha El-kamisy

Professor of nuclear physics, physics department faculty of science, Ain shams university, for his suggestion of the plan of this work, continuous help and support, for his continuous encouragement, for his kindness and valuable scientific comments during this work.

I would like to express my deepest thanks and gratitude to **Dr. / Hala Mahmoud Hosny** Associated Professor of material physics, physics department ,faculty of science, Ain shams university, for her continuous help, support, advice, and for her care, and continuous encouragement, and for her kindness, scientific comments.

I would like to express my deepest thanks and gratitude to **Dr./ Abd Allah El-Shamy** Associated Professor, Uraniferous Sedimentary Rocks Department, Nuclear Material Authority, Egypt, for his continuous help and support, for his kindness and valuable scientific suggestions during this work.

I would like to express my special deepest thanks and gratitude to **Dr/ Mogahed Ebrahim AL-Abyad** Associated Professor, Nuclear Research Center, Physics Department, Atomic Energy Authority for providing many facilities during preparation and experimental measurements, continuous communication, useful discussions and kind supervising throughout this work.

Mourad Mahmoud 2017

Contents

Ackn	owledgement	
Conte	ent	
List of	f Tables	I
List of	f Figures	II
Abstra	nct	III
Summ	ary	X
Introd	uction and Aim the work	XI
Cha	pter One: Radioactivity and Sources of Radiation	
1.1	Radioactivity and radionuclides	1
1.2	Sources of Radioactivity background radiation	1
1.2.1)	Natural radioactivity in environmental sample	2
	1.2.1.1) Air (Cosmic rays radiation)	2
	1.2.1.1. A) Primary component	3
	1.2.1.1. B) Secondary component	3
	1.2.1.2) Soil	4
	1.2.1.3) Water	4
	1.2.1.4) Plant	5
	1.2.1.5) Animal products	6
	1.2.1.6) Foodstuff	7
	1.2.1.7) Terrestrial sources of radiation	7
1.2.2)	Radioactive Series	8
	1.2.2. A) Uranium-238 Series	10
	1.2.2. B) Actinium Series	11
	1.2.2. C) Thorium-232 Series	12
	1.2.2. D) Potassium-40	13
1 2 3)	Radon	14

1.2.4)	Manmade radiation sources	15
1.3	Pathways of radionuclides	16
	1.3.1) Skin	17
	1.3.2) Inhalation.	17
	1.3.3) Ingestion	17
C	Chapter Two: Exposure and Radiation Hazard	
2.1	Exposure	18
	2.1.1) Exposure from natural radiation sources (Cosmic	
	Radiation)	18
	2.1.2) Exposure by terrestrial radiation	18
	2.1.2. A) External exposure from terrestrial γ radiation	19
2.2	Internal exposure from terrestrial radiation	19
2.3	Units Radioactivity Unit.	21
	2.3.1) Activity Units	21
	2.3.2) Dose or Absorbed Dose Unit	21
	2.3.3) Exposure Unit	22
	2.3.4) Dose Equivalent Unit	22
	2.3.5) Dose Rate Unit	23
2.4	The basics quantities of importance in radiation	
	measurements	24
	2.4.1) Absorbed Dose and Effective Dose Rate	24
	2.4.2) Radium Equivalent Activity	25
	2.4.3) The External Hazard Index (H _{ex})	25
	2.4.4) The Internal Hazard Index (H _{in})	25
	2.4.5) Radiation level index (I yr)	26
	2.4.6) Annual effective dose rate	26
	2.4.7) Annual gonadal dose equivalent (AEGE)	26
	2.4.8) Excess Lifetime Cancer Risk	26

2.5	Biological effects of radiation	27
	2.5.1) Basic human physiology	27
	2.5.2) Cell biology	27
	2.5.3) Sequential Biological Pattern Effects	28
	2.5.4) The interaction of the radiation with cells	29
2.6	Radon and its hazard	32
2.7	Radiation Hazards	33
2.8	Protection from radiation	34
	2.8.1) Radiation protection principles	35
2.9	Protection method	36
Cha	pter Three: Geological and Theoretical Aspects	
3.1	Geological and structural setting	39
	3.1.1) Paleozoic rocks	39
	3.1.2) Mesozoic rocks	43
	3.1.3) Quaternary rocks	43
3.2	Radon and radon daughters	43
3.3	Chemical and physical properties of radon	44
	3.3.1) Factors affecting on the radon in underground mines	45
3.4	Uranium Mines	46
3.5	Nonuranium mines	46
3.6	Gamma ray properties	47
	3.6.1) The Photoelectric effect	47
	3.6.2) Compton scattering	49
	3.6.3) Pair Production	49
3.7	Radiation Detection and measurements	50
	3.7.1) Scintillation detectors	51
	3.7.2) NaI Scintillation Detector	54

3.7.3	Semiconductor detectors	55
3.7.4	Germanium detector	58
\mathbf{C}	hapter four: Experimental techniques and	
	measurements	
4.1 Determ	nination of some trace elements	60
4.2 Radon	measurements	60
4.2.1)	Air sampling and filtering	60
4.2.2)	pump calibration	61
4.2.3)	Alpha counting instrument	61
4.2.4)	Calibration for detector efficiency	62
4.2.5)	Background	63
4.2.6)	Self-absorption of the filter	63
4.2.7)	(Roll-method) Procedure for potential alpha energy	
	concentration WL	63
4.2.8)	Calculation of the individual WL	64
4.2.9)	Theory of calculations	65
4.3 Genera	ll Features of the Studied Area	65
4.3.1)	Samples Collection	65
4.3.2)	Samples Preparation	66
4.4 Radioa	ctivity Measurements	67
4.4.1)	Gamma-ray spectrometry	67
4.4.1	1.1) The gamma spectrometer set up	67
4.5 Detecto	or	71
4.5.1) Spectrum Formation	71
4.6 Activity	y Calculation	82
4.7 Uncert	ainty calculation	84
4.8 Descrip	otion of the X-ray Fluorescence System	86
4.8.1) Sample Preparation for X-ray Fluorescence	87

Chapter five

Results and discussion

5.1 Radon Progeny measurements	88
5.2 Gamma Spectrometric analysis	89
5.2.A) Activity concentration (mine I)	89
5.2.B) Activity concentration for mine II	91
5.3 Uncertainty	92
5.4 Comparative study with the international values	92
5.5 The activity concentration ratios for two mines	93
5.6 Radiation Hazard Parameters	94
5.7 X-Ray fluorescence analysis	96
5.8 Radon Measurement Results	98
5.8.1) The track densities, the areal exhalation rate and the	
mass exhalation rate	98
5.8.2) Effective Radium Content and Emanation Power	99
Conclusion	
References	
Arabic Summary	

List of Tables

Table	Description	Page
No.		No.
Table 1.1	Sources of radiation	2
Table 1.2	Radioisotopes formed by the action of cosmic rays on the atmosphere	4
Table 1.3	The important properties of the radionuclides of the U-238 decay chain	10
Table 1.4	The important properties of the radionuclides of the Th-232 decay chain	13
Table 2.1	The dose conversion factor for ingestion of radionuclide (nSv/Bq)	20
Table 2.2	Biological effects of acute dose	32
Table 2.3	Dose limit recommendations (N.C.R.P)	33
Table 3.1	Chemical and physical properties of radon.	46
Table 3.2	Some examples of scintillators and its properties	53
Table 4.1	Relative intensities of gamma-rays which emitted by 226Ra in equilibrium with its daughters	73
Table 5.1	Radon progeny concentration in WL and Bq/m3	88
Table 5.2.A	Gamma Spectrometric analysis for the activity concentration of ²²⁶ Ra, ²³² Th, ⁴⁰ K, ²³⁸ U and ²¹⁰ Pb respectively which are given in Bq/kg for mine I	90
Table 5.2.B	Gamma Spectrometric analysis for the activity concentration of ²²⁶ Ra, ²³² Th, ⁴⁰ K, ²³⁸ U and ²¹⁰ Pb respectively which are given in Bq/kg for mine II	91
Table 5.3	The range and average for mine I and mine II	92
Table 5.4	Comparison of mean activity concentrations (Bq/kg) with the international and Egyptian published results of beach sand samples countries	93
Table 5.5	Ratios of (²¹⁰ pb/ ²³⁸ U, ²¹⁰ Ra/ ²³⁸ U, and ²¹⁰ pb/ ²²⁶ Ra) for all samples	94
Table 5.6	Radium equivalent Ra_{eq} , external hazard H_{ex} , internal hazard H_{in} , gamma index I γ in Bq/Kg and absorbed dose in all samples	95
Table 5.7	Hazard indices (the annual outdoor effective dose AEDE, the annual gonadal dose equivalent AGDE and the fatal cancer risk ELCR).	96
Table 5.8	The result of atomic absorption spectrometer analysis for selected samples	97
Table 5.9	The track densities, the areal exhalation rate and the mass exhalation rate for chosen samples	98
Table 5.10	Effective Radium Content and Emanation Power for the chosen samples	99

List of Figures

Figure No.	Description	Page
		No.
Fig. 1.1	naturally occurring radioactive decay series	8
Fig 1.2	A schematic diagram of the uranium-238 series	10
Fig 1.3	A schematic diagram of U-235 radioactive decay series (actinium)	12
Fig 1.4	A schematic diagram of the Thorium series	12
Fig 1.5	Decay scheme of ⁴⁰ K	13
Fig. 1.6	Sources distribution of average radiation exposure to the world population	15
Fig 1.7	The pathway of radionuclides in environment.	16
Fig.3.1	Depiction of photoelectric effect in a free atom.	48
Fig.3.2	The Compton scattering mechanism.	49
Fig.3.3	The Pair production electron positron mechanism	50
Fig.3.4.a	pulse-mode scintillation	52
Fig.3.4.b	Linear focused photomultiplier tube	52
Fig 3.5	The different energy bands of insulators and semiconductors	55
Fig 3.6	Schematics of semiconductor types of HPGe p or n type at the top	59
Fig.4.1	Air sampling pump with filter paper holder	61
Fig.4.2	device EDA (RAD-200); for counting of alpha emission	62
Fig.4.3	Satellite Image with two Old Mines of ALLOUGA area	66
Fig 4.4	The different stages of the preparation method	67
Fig 4.5	Absolute efficiency- energy curve for rock samples	72
Fig 4.6	HPGe detector relative efficiency curve in the range 241 -1847 keV use of Ra-226 source.	74
Fig.4.7	Full-energy peak efficiency curve for HPGe detector	75
Fig 4.8	Energy calibration curve	77
Fig 4.9	Energy Resolutions	78
Fig.4.10	Block diagram of gamma-spectrometer detectors	82
Fig 4.11	The gamma transitions for different radionuclides	83
Fig.5.1	work level curve for mine I and mine II	89
Fig.5.2.A	The activity concentrations of ²²⁶ Ra, ²³² Th and ⁴⁰ K of the samples.	90
Fig.5.2.B	Distribution of mean activity concentrations of ²²⁶ Ra, ²³² Th and ⁴⁰ K for all rock types for two mines.	92
Fig.5.3	copper mineralization inside the mine	97
Fig.5.4	Iron and manganese ore inside the mine	97
Fig.5.5	The correlation between radium content and exhalation rate	99

ABSTRACT

There is increasing interest in radiological assessment of discharges of naturally occurring radionuclides in the terrestrial environment also an important pathway for human exposure is via ingestion and radon inhalation. For most contamination scenarios radioactive contamination of animal fodder and hence animal products are along with drinking water a key element in determining the internal dose to man this study is concerned with the measurement of the radon concentration, work level in two mines and naturally occurring radionuclides Ra-226, Th-232 and K-40 in forty samples. The radon progeny concentration is determined by (EDA) device and then we calculated work level. The average of radon concentration and the work level for two mines are 167.5042, 1310.429 Bg/m³ and 0.0219, 0.1771 respectively. The activity concentrations of ²²⁶Ra, ²³²Th and ⁴⁰K in rock samples from ALLOUGA area, Abu Zenima Region, southwestern Sinai, Egypt were determined using gamma-ray spectrometry in order to assess the associated radiation hazard impacts. The mean activity concentrations of $^{226}\text{Ra}, \,\,^{232}\text{Th}$ and ^{40}K were found to be $212.63\pm3.01, \,\,75.80\pm1.13$ and 553.56±6.43 Bqkg⁻¹ respectively for (mine I) and 152.54, 61.19and 307.42Bqkg⁻¹ respectively for (mine II). These values exceed the limits of maximum international value. Radium equivalent (Ra_{eq}), the external hazard index (H_{ex}) , the internal hazard index (H_{in}) , the representative level index (I_v), dose rate, annual effective dose, excess lifetime cancer risk (ELCR) and annual gonadal dose equivalent (AGDE) were estimated and discussed. Further investigations of the samples have been performed using X-ray Fluorescence and remarkable concentrations of Al, Fe, Ti, Rb and Zr have been observed.

Key Words: Natural Radioactivity, HpGe device, X-Ray Fluorescence, Radon Emanation, Absorbed Dose, South Sinai.

Summary

Um Bogma formation represents the main target of this study where most of the uranium occurrences are incorporated in its Rock. Um Bogma formation was introduced in (1969) in using the name Um Bogma formation, for the carbonate rocks. There is a mountain of information about the mineral composition and the accompanied radioactivity levels in this region. These information are essential to creating a scientific database of the elemental and radiological baseline level.

The radon progeny concentrations are determined by (EDA RAD 200) device and are calculated work level inside the mines. The elemental analysis has been undertaken by means of the X-ray fluorescence. The observed major elements are Al, Fe, Ti, Rb and Zr, which are strategic elements. The radioactivity concentrations of rock samples have been identified using gamma ray spectroscopy techniques. The observed radionuclides are the naturally occurring radioactive members of uranium and thorium decay series along with the radionuclide ⁴⁰K. The radiation health hazards due to natural radionuclides were calculated. The radioactivity concentration of the rocks is to great extent higher than and/or comparable with the populated world average except for the activity concentration of 40K which is lower than the populated world average. These radiation hazards indices indicate that the region under study possesses higher values than the international limits. Our data may help in constructing a database for proposing the suitable solution to exploit this region for the sake of the country development in the industrial domain.

Introduction and Aim the work

Introduction

All living things have been exposed to radiation, from the beginning of life on earth. It is disquieting to people that they coexist with radiation yet it cannot be seen, heard or felt. Natural radioactivity is wide spread in the earth's environmental it exists in soil, plants, water and air. Environmental natural gamma radiation is formed from terrestrial and cosmic sources. The exposure of human beings to ionizing radiation from natural sources is a containing and inescapable feature of life on earth. For most individuals, this exposure exceeds that from all man-made sources combine. There are two main contributors to natural radiation exposures high energy cosmic ray particles incident on the earth's atmosphere and originated radioactive nuclides in the earth's crust and are present everywhere in the environment, including the human body itself. Both external and internal exposures to humans arise from these sources. The natural radioactivity comes mainly from the ²²⁶Ra, ²³²Th decay series, and natural ⁴⁰K, respectively ^[1]. The average activities of ²²⁶Ra and ²³²Th in the undifferentiated earth crust are in the range of 25-50 Bg/Kg, but due their large ion radius, both elements may be especially concentrated in late-crystallizing rocks such as granites and other alkaline magmatic ores, often accompanied by other incompatible elements like Rare Earth Element (REE).

Uranium is characterized by both radiotoxicity and chemical toxicity, but it is the latter which limits its exposure to humans whereas thorium is to be considered as only radiotoxic^[2]. The health hazards associated with these radionuclides stem from their ability to accumulate in human tissues. During the processes of nuclear transformation, the radionuclides emit gamma rays as well as high energy particles, thereby causing intensive damage to the tissues where they are localized and, to a lesser extent on the neighboring