

EXPLORING CONCEPTUAL LINKAGES BETWEEN VALUE ENGINEERING AND SUSTAINABLE CONSTRUCTION

By

Ahmed Badawy Hassan

A Thesis Submitted to the

Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the degree of
MASTERS OF SCIENCES
in
ARCHITECTURE ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2014

EXPLORING CONCEPTUAL LINKAGES BETWEEN VALUE ENGINEERING AND SUSTAINABLE CONSTRUCTION

By

Ahmed Badawy Hassan

A Thesis Submitted to the

Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the degree of
MASTERS OF SCIENCES

in ARCHITECTURE ENGINEERING

Prof. Dr.
Emad Aly El Din El Sherbiny
Professor of Architecture
Department of Architecture
Cairo University

Dr.
Tarek Nasr Eldin
Department of Architecture
Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2014

EXPLORING CONCEPTUAL LINKAGES BETWEEN VALUE ENGINEERING AND SUSTAINABLE CONSTRUCTION

By

Ahmed Badawy Hassan

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the degree of
MASTERS OF SCIENCES
in
ARCHITECTURE ENGINEERING

Approved by the Examining committee

Prof. Dr. Emad Aly El Din El Sherbiny	Main Advisor
Prof. Dr. Mohamed Reda Abdalah	Member
Prof. Dr. Sherif Sabry Al Attar	Member

Engineer: Ahmed Badawy Hassan Hassanin

Date of Birth: 12/01/1982 **Nationality:** Egyptian

E-mail: zgroub2005@hotmail.com

Phone: 01001462200

Address: 1 Ahmed Al Sakandary ST. –

Misr Al Gadida - Egypt.

Registration Date: 01 /10/2011 **Awarding Date:** -/--/----

Degree: Master of Science

Department: Architectural Engineering

Supervisors: Prof.Dr. Emad Aly Eldin El Sherbiny

Dr. Tarek Ibrahim Nasr Eldin

Examiners: Prof. Dr. Mohamed Reda Abdalah

Prof. Dr. Sherif Sabry Al Attar Prof.Dr. Emad Aly Eldin El Sherbiny

Cairo University Cairo University Cairo University Fayoum University Cairo University

Title of Thesis: Exploring Conceptual linkages between Value Engineering and Sustainable Construction

Key words: best value, conceptual linkages, sustainable construction, value engineering Summary:

Value Engineering is a systematic approach for achieving optimum value for money, while maintaining or improving quality, safety, reliability and maintainability. It is a problem-solving technique based on analysis of the project functions demanded by the owner in order to meet the end user's requirement and needs. VE uses multi-discipline teams to analyze a product design, an engineering concept or a construction approach. Sustainable construction is broadly created to explain the contribution of the construction industry to sustainable development. Literature suggests that the key targets for construction include: environmental impact reduction; cost minimization; social improvement; economic and cultural quality throughout the whole life of the project.

VE comprises powerful tools and techniques that can be used to adopt and diffuse sustainable construction principles amongst its team members. While concerns of sustainable construction dimensions are inherent in most VE studies, the level of consideration differs from study to another depending on the knowledge of team members. Further research is needed to establish the barriers that could impede the further integration of both subjects. More conceptual linkages must be developed, if an integrated approach to VE and sustainable construction are to emerge considering encouraging those who have the knowledge.

Acknowledgments

First of all, I am grateful to God for giving me the strength and patience to finish this thesis. Foremost, I would like to express my sincere gratitude to my advisors Prof. Dr. Emad El Sherbiny and Dr. Tarek Nasr El Din for the continuous support of my thesis study and research, for their patience, motivation, enthusiasm, and immense knowledge. Their guidance helped me in all the time of research and writing of this thesis. I could not have imagined having better advisors and mentor for my thesis study. I am totally indebted to Dr. Emad El Sherbiny for the extended precious hours he spent with me to develop the thesis.

My sincere thanks also go to my wife Arch. Rana Gamal, who supported me in the research. I owe a debt of gratitude to her.

I would also like to express my deepest gratitude to my parents and all my family.

Very special thanks to my friends Arch. Amira Shaaban, Eng. Mohamed Mahmoud and Dina Raafat for their efforts and time.

I owe special gratitude to Dar Al Handasah where I learnt a lot in, through working on great projects helped me in my thesis.

Finally, I would like to thank everybody who was important to the successful realization of thesis, as well as expressing my apology that I could not mention personally one by one. All may not be written but nothing is forgotten.

Table of Contents

A NOTE AF	SOUT THE R	ESEARCHER	I
ACKNOWI	LEDGMENTS	S	II
TABLE OF	CONTENTS		III
LIST OF FI	GURES		VII
LIST OF TA	ABLES		X
NOMENCL	ATURE		XI
ABSTRACT	Γ		XII
CHAPTER	1: INTRODU	CTION	1
1.1	Research pr	oblem	1
1.2	Goal		3
1.3	Objectives.		3
1.4	Research ap	pproach	3
1.5	Expected re	esults	4
1.6	Thesis guid	e	4
CHAPTER	2: VALUE E	NGINEERING (VE)	5
2.1	Understandi	ng Value Engineering (VE)	5
	2.1.1 VE Or	igins	5
	2.1.2 VE Hi	story	6
	2.1.3 VE de	finitions	6
	2.1.4 VE co	ncept	7
	2.1.5 VE ap	plicability	8
	2.1.6 VE me	ethodology	10
	2.1.6.1	Pre-study (Planning) phase	10
	2.1.6.2	VE workshop (Design) phase	11
	2.1.6.3	Post study (Construction) phase	12
2.2	The VE job	plan	13
	2.2.1 Inform	nation phase	14
	2.2.2 Functi	onal analysis phase	15
	2.2.2.1	Classifying function	16
	2.2.2.2	Defining functions	17

		2.2.2.3	Functional Analysis System Technique (FAST Dia	gram)1/
		2.2.2.4	Work breakdown structure	19
	2.2.3	Creati	ve phase	21
	2.2.4	Evalua	ation phase	22
	2.2.5	Develo	opment phase	23
	2.2.6	Presen	ntation phase	24
	2.2.7	Implei	mentation phase	25
2.3	3 Lif	e Cycle (Costing (LCC)	26
	2.3.1	LCC t	erminology	27
		2.3.1.1	Initial and future expenses	28
		2.3.1.2	Residual value	28
		2.3.1.3	Study period	28
		2.3.1.4	Real discount rate	29
		2.3.1.5	Present value	29
		2.3.1.6	Finalize LCC	30
	2.3.2	LCC r	methodology	31
	2.3.3	Using	life cycle costing with value engineering	32
2.4	4 VE	applicat	ions to risk assessment and analysis	32
	2.4.1	Risk a	ssessment	33
	2.4.2	Risk a	nalysis	33
2.5	5 VE	E survey		34
CHAPTE	R 3: SU	JSTAIN	ABLE CONSTRUCTION (SC)	36
3.1	l Under	rstanding	sustainability through green architecture	36
	3.1.1	Sustai	nable development	39
	3.1.2	Sustai	nable construction	43
	3.1.3	Sustai	nable construction and Green Mark	48
	3.1.4	Conne	ections between Sustainability and Constructability	49
	3.1.5	Princi	ples, Systems and Materials	50
3.2	2 Ac	hieving s	ustainable construction	53
	3.2.1	Procui	rement	54
	3.2.2	Site/E	nvironment	56
	3.2.3	Materi	ial selection	59
	3.2.4	Waste	prevention	66

	3.2.5	Recyc	ling	69
	3.2.6	Energy	y	73
	3.2.7	Buildi	ng and material reuse	75
	3.2.8	Constr	ruction technologies	78
	3.2.9	Health	and safety	80
	3.2.10	Indoor	environmental quality	81
	3.2.11	Result	s	83
3.3	Sust	ainable	materials	86
	3.3.1	Steel o	construction	86
	3.	.3.1.1	Structural framing	86
	3.	.3.1.2	Fire resistance	89
	3.	.3.1.3	Corrosion protection	90
	3.	.3.1.4	Floor vibrations	91
	3.3.2	Dry co	onstruction	93
	3.	.3.2.1	Dry internal partitions walls	93
	3.	.3.2.2	Benefits of using dry wall	94
	3.3.3	Glass	and cladding	96
	3.3.4	Prefab	ricated parapets, staircases, and bathroom units	98
3.4	Eval	luation o	of steel costs	101
3.5	Proj	ects usi	ng sustainable materials	103
CHAPTER	R4: THI	E CRIT	ERIA OF MERGING VE WITH SC	106
4.1	VE s	synergy	with SC	107
4.2	Corr	relation	between VE and SC	111
4.3	Capa	ability c	of VE to implement SC	114
4.4	Six	steps to	realize SC	115
4.5	Life	Cycle (Costing (LCC) as a contribution to SC	116
	4.5.1	Purpos	se of this methodology	117
	4.5.2	Using	this methodology	118
	4.5.3	Overv	iew of outcomes	121
	4.5.4	Risk n	nodel	122
4.6	Mer	ging VE	E with SC results	124

CHAPTER	5: AP	PLYING VE/SC CRITERIA ON TWO DIFFEREN	T CASE
STUDIES A	AT DIE	FFERENT PROJECTS' PHASE	123
5.1	Intro	oduction	123
5.2	First	t case study - Correctional Facility in KSA	124
	5.2.1	Executive summary	124
	5.2.2	Project description	137
	5.2.3	Value enhancement – task flow activities	140
	5.2.4	Summary of VE recommendations	146
5.3	Seco	ond case study - Al Ghazala Intercontinental Hotel	150
	5.3.1	Executive summary	152
	5.3.2	VE session objectives	154
	5.3.3	VE process	158
	5	.3.3.1 Phase 1: Initialization/ Preliminary study	158
	5	.3.3.2 VE process schedule	158
	5	.3.3.3 Phase 2: main VE study	158
	5	.3.3.4 Another proposal study	158
	5	.3.3.5 Phase 3: finalization and reporting	163
	5.3.4	Recommended cost reduction solutions	165
5.4	Con	clusions	167
CHAPTER	6: CO	NCLUSIONS & RECOMMENDATIONS	170
6.1	Con	clusions	170
	6.1.1	Theoretical results	170
	6.1.2	Analytical results	171
	6.1.3	General results	171
6.2	Rec	ommendations	172
6.3	Con	tributions	173
6.4	Futu	ıre research	174

LIST OF REFERENCES	176
APPENDIX A: SUMMARY OF VE RECOMMENDATIONS	188
APPENDIX B: DETAILED RESULTS OF VE SECOND CASE STU	DY FIRST
PROPOSAL	200
APPENDIX C: DETAILED RESULTS OF VE SECOND CASE STU	DY
SECOND PROPOSAL	207

List of Figures

Figure 2.1: The three main issues of Value	8
Figure 2.2: The ideal way to apply VE	9
Figure 2.3: The three Stages of Value Engineering1	0
Figure 2.4: The three main stages of a project and VE's application for any project1	2
Figure 2.5: The Seven Phases of the VE Job Plan1	3
Figure 2.6: Fast diagram VE study1	8
Figure 2.7: Work breakdown structure2	0
Figure 2.8: Life cycle cost elements	7
Figure 2.9: How to select item	0
Figure 2.10: Life cycle costing logic	1
Figure 2.11: Construction risk analysis34	4
Figure 2.12: Survey Results on Contractors' Perception of VE	5
Figure 2.13: Survey Results on Owners' Perception of VE	5
Figure 3.1: Some of the almost 60 countries that either have or are developing green	
building assessment systems3	7
Figure 3.2: The oil rollover point is the year in which the worldwide production of oil	
will peak	2
Figure 3.3: Sustainable construction also helps achieve gains in human health and	
prosperity4	.3
Figure 3.4: Steel and glass are examples of sustainable materials	14
Figure 3.5: Framework for sustainable construction developed in 1994 by CIB Task47	7
Figure 3.6: BCA green mark	,
Figure 3.7: Sustainable procurement process54	ļ
Figure 3.8: Steel structural framing61	Ĺ
Figure 3.9: Formaldehyde plywood	
Figure 3.10: CRD waste procedures68	3
Figure 3.11: Processing of copper slag72	2
Figure 3.12: Precast kerb using copper slag	2
Figure 3.13: Precast concrete internal partition wall using copper slag7	2
Figure 3.14: Steel structural framing - steel column, steel beam, metal decking and	
bracing86	,

Figure 3.15: (Circular hollow section in filled with concrete provides the required fire	
	resistance - Courtesy of LOOK Architects	37
Figure 3.16:	Openings in the beams ease the installation of services	37
Figure 3.17: 3	Steel decking only requires minimum concrete topping	88
Figure 3.18: 1	Bracing provides structural stability to the building	38
Figure 3.19: 3	Steel column is encased with concrete. Column at far left with steel	
	reinforcement prior to encasement8	9
Figure 3.20: 3	Steel beams sprayed with Vermiculite	90
Figure 3.21: 3	Steel sections before galvanizing	90
Figure 3.22: 3	Steel sections after galvanizing	91
Figure 3.23: 1	More attention has to be paid during the design process to prevent or	
	reduce floor vibrations	92
Figure 3.24: 1	Dry wall cross section	93
Figure 3.25: 3	Sound Transmission Class (STC)) 5
Figure 3.26: 4	4-legged stainless steel spider within a tension truss point supported glas	SS
	walls	96
Figure 3.27:	Closed-up view of 4-legged stainless steel spider)7
Figure 3.28: 1	Examples for using glass/curtain walls	€7
Figure 3.29: 1	Examples for parapets	98
Figure 3.30: 1	Examples for prefabricated staircases	99
Figure 3.31:	Use of shallow floor trap for pre-fabricated bathroom units10	00
Figure 3.32: '	The completed Erie on the Park10)3
Figure 3.33: 1	Erie on the Park was constructed with structural steel framing and metal	
deck		04
Figure 3.34: '	Two of the braces were moved to the exterior of the building10)4
Figure 3.35: '	The steel and glass curtain wall with the mega braces stands out against	
the surroundi	ng masonry building10)4
Figure 3.36: 3	Section between columns)5
Figure 3.37: 1	Detail at bracing10)5
Figure 3.38:	AMK hub street view10)6
Figure 3.39:	AMK construction phase)7
Figure 4.1: C	ost reduction potential vs. cost to change1	09
Figure 4.2: C	ost impact of principal disciplines – office building1	11
Figure 4.3. C	onceptual aspects for VE and sustainable construction 1	13

Figure 4.4: Core process of LCC.	114
Figure 4.5: Methodology flow diagram	120
Figure 4.6: Task flow diagram.	125
Figure 5.1: General layout.	126
Figure 5.2: Prisoners circulation path	127
Figure 5.3: Vehicle path	127
Figure 5.4: Landscape zones	128
Figure 5.5: Cells analysis.	129
Figure 5.6: Zoning plan	133
Figure 5.7: Summary of the value engineering potential savings	137
Figure 5.8: Project approach	141
Figure 5.9: Quality model	142
Figure 5.10: Fast diagram	145
Figure 5.11: Site location.	151
Figure 5.12: Perspective shot for the hotel	151
Figure 5.13: 7 th floor plan	153
Figure 5.14: 8 th floor plan	153
Figure 5.15: 9 th floor plan	154
Figure 5.16: Front elevation.	154
Figure 5.17: Water features deletion	155
Figure 5.18: Water features/planters deletion	155
Figure 5.19: Pool deletion.	155
Figure 5.20: Roof parapet deletion	156
Figure 5.21: Balconies parapet deletion.	156
Figure 5.22: Shading deletion	156
Figure 5.23: Window deletion	157
Figure 5.24: Window deletion	157
Figure 5.25: VE cost reduction proposals	164
Figure 5.26: The percentage distribution of cost decrease by trade	165

List of Tables

Table 2.1: Comparison of various VE job plans
Table 3.1: Various themes of sustainable construction
Table 3.2: Connections between Sustainability and Constructability50
Table 3.3: Sustainability and Constructability Principles for Design51
Table 3.4: Sustainability and Constructability Principles for Design and Construction52
Table 3.5: Sustainability and constructability principles for construction53
Table 4.1: The powers and limitations of VE to integrate sustainable construction
principles
Table 4.2: Summary and overview of Steps – part 1
Table 4.3: Summary and overview of Steps – part 2
Table 4.4: Project risk model
Table 5.1: Cells analysis
Table 5.2: Engineering disciplines VE summary
Table 5.3: Summary for cost breakdown – part 1
Table 5.4: Summary for cost breakdown – part 2
Table 5.5: Summary of VE results – part 1
Table 5.6: Summary of VE results – part 2
Table 5.7: Summary of VE results – part 3
Table 5.8: Summary of potential savings
Table 5.9: Summary of cost reduction
Table 5.10: VE exercise summary
Table 5.11: Total savings
Table 5.12: Omission of the pool building
Table 5.13: Total omitted items
Table 5.14: Omission of 44 rooms
Table 5.15: Summary of cost reduction

Nomenclature

VE value engineering

SC sustainable construction
GNP Gross National Construction

LCC life cycle cost VA value analysis SOW scope of work

VECP value engineering change proposal

WBS work breakdown structure
LCCA life cycle cost analysis
USGBC U.S. Green Building Council

BREEAM Building Research Establishment Environmental Assessment Method

LEED Leadership in Energy and Environmental Design

CASBEE Comprehensive Assessment System for Building Environmental Efficiency

DGNB Duetche Gesellschaft Fur Nachhaltiges Bauen

IEA International Energy Agency
PENREN the Pentagon Renovation Program
EPA Environmental Protection Agency

CFC Chlorofluorocarbon

HCFC Hydro chlorofluorocarbon VOC volatile organic compounds

PVC polyvinyl chloride

CCA copper chromium arsenate

PBT persistent bio accumulative toxic chemicals ACQ alkaline copper and quaternary ammonium

SCS scientific certification systems
FSC Forest Stewardship Council
EPS expanded polystyrene
SIP structural insulated panels
CMU concrete masonry wall
PDA personal digital assistant

IAQ indoor air quality

HVAC heating ventilation and air-conditioning system

STC sound transmission class

HDB the housing of development board

TBL triple bottom line