

REVIEW ON SCREENING AND PREVENTION OF BREAST CANCER

Essay

Submitted for partial fulfillment of Master's Degree in Clinical Oncology and Nuclear Medicine

By

Caroline Magued Abdo Elmaraghi

M.B.,B.Ch. Faculty of Medicine – Ain Shams University

Supervised by **DR. IMAN MOHAMED FOUAD**

Professor of Clinical Oncology Nuclear Medicine Faculty of Medicine – Ain Shams University

DR. KHALED ABDEL KARIM MOHAMED

Assistant Professor of clinical Oncology Nuclear Medicine Faculty of Medicine – Ain Shams University

DR. AZZA MOHAMED ADEL

Lecturer of clinical Oncology and Nuclear medicine Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University Cairo 2011

Acknowledgment

First, and foremost, I'd like to thank God who had given me the power to accomplish this work.

I would like to express my great thanks to **Prof. Dr. Iman**Mohamed Fouad, Professor of Clinical Oncology Nuclear

Medicine, Faculty of Medicine, Ain Shams University, for her

generous supervision, this work would not have been possible

without her help, encouragement and fruitful advice.

My sincere gratitude and appreciates are addressed to Ass. Prof. Dr. Khaled Abdel Karim Mohamed, Assistant Professor of clinical Oncology Nuclear Medicine, Faculty of Medicine, Ain Shams University for his thoughtful guidance, his effort and cooperation.

I would like also to express my deeply felt thanks to **Dr. Azza Mohamed Adel**, Lecturer of clinical Oncology and Nuclear medicine, Faculty of Medicine, Ain Shams University, for help, support and useful advice that were so valuable to me.

Finally I would like to thank everyone who helped me during this essay especially my husband and parents for their continuous love and care.

Caroline Magued Elmaraghi

استعراض على الفحص والوقاية من سرطان الثدي

رسالة توطئة للحصول علي درجة الماجستير في علاج الأورام والطب النووى

مةدمة من

طبيبة/ كارولين ماجد عبده المراغي بكالوريوس الطب والجراحة - جامعة عين شمس

تحت إشراف

الأستاذة الدكتورة/ إيمان محمد فؤاد أستاذ علاج الأورام والطب النووى كلية الطب جامعة عين شمس

الأستاذ الدكتور/ خالد عبد الكريم محمد أستاذ مساعد علاج الأورام والطب النووى كلية الطب جامعة عين شمس

الدكتورة/ عزة محمد عادل مدرس علاج الأورام والطب النووى كلية الطب جامعة عين شمس

كلية الطب جامعة عين شمس القاهرة ٢٠١١ Breast cancer is the most common cancer and a leading cause of death in women worldwide. Its incidence is increasing in developing country due to changes in reproductive factors, lifestyle, and increased life expectancy.

There are number of established and potential risk factors associated with breast cancer, like age/gender, race/ethnicity, family history, hormonal/reproductive factors, proliferative breast disease, ionizing radiation, personal history of malignancy, life style factors, and mammographic density.

BRCA1 BRCA2 genes have important role in DNA repair, there mutation lead to increase the lifetime risk of breast cancer to between 40% and 85% and of ovarian cancer to between 20% and 50%.

There are several models for assessing a women's risk of having breast cancer, the most widely used is the Gail model. Identifying women at high risk is very important so as to present for them the appropriate method of screening and counsel them about the risk reduction method suitable for them.

Breast cancer screening has proved to be effective in reducing breast cancer mortality. The mammography is the gold standard method for screening. Breast self examination is no longer recommended but, breast awareness is encouraged instead, so as the women be familiar with their breasts and notice any changes early.

Major organizations vary in their recommendations for Clinical Breast Examination. Variation is by age at initiation, breast cancer risk status, frequency of CBE performance, and the strength of language used to recommend CBE. The UPSET and WHO didn't recommend for it, on the other hand it's recommended annually by the ASCO and the NCCN.

Increased mammographic density in premenopausal women can obscure the radiological features of early breast cancer. Further, it has been suggested that cancers associated with BRCA mutations, in particular BRCA1, are more likely to have a benign appearance on mammography. Therefore magnetic resonance imaging is used in conjunction with mammography in proven BRCA mutation carrier or first degree relative to a proven BRCA carrier or those with 20% lifetime risk for breast cancer on the basis of family history and with Women with histories of chest irradiation.

Ultraonography in conjunction to mammography is used in all women with dense breast, and in high risk women when MRI is contraindicated.

Breast cancer can potentially be prevented in women considered at high risk for breast cancer. Life style modification like maintaining healthy body weight, being physically active and avoiding alcohol are simple way to reduce breast cancer and are recommended for all women at all risk levels.

Bilateral prophylactic mastectomy reduces the risk of breast cancer up to 95%. It has special indications.

Bilateral salpingo oophercetomy had decreased BC risk and Ovarian cancer risk but it showed an increase in all-cause mortality, fatal and nonfatal coronary heart disease, and lung cancer, so BSO is an option for BRCA mutation carrier only in whom the potential benefit of the procedure are increased because of reduction in BC by 50% also of ovarian cancer.

Tamoxifen and Raloxifen are the recommended SERM used as chemoprevention, several trials were done, and they proved effectiveness in breast cancer risk reduction.

CONTENTS

	Page
LIST OF ABBREVIATIONS	i
LIST OF TABLES	ii
LIST OF FIGURES	iii
CHAPTER 1: EPIDEMIOLOGY AND ETIOLOGY C)F
BREAST CANCER	1
CHAPTER 2: Breast Cancer 1 Breast Cancer 2 genes	
OVERVIEW	18
CHAPTER 3: RISK ASSESSMENT	27
CHAPTER 4: SCREENING FOR BREAST CANCER	39
CHAPTER 5: PREVENTION OF BREAST CANCER	83
SUMMARY	108
REFERENCES	111
ARABIC SUMMARY	-

LIST OF ABBREVIATIONS

ACS American Cancer Society
ADH Atypical Ductal Hyperplasia

ASM Areola Sparing Mastectomy

ATM Ataxia Telangectasia Mutated

ATR ATM Related Kinase

BARD1 BRCA1-Associated Ring Domain 1

BC Breast Cancer

BCPT Breast Cancer Prevention Trial

BIRAD Breast Imaging Report and Data system

BOADICEA Breast and Ovary Analysis of Disease Incidence and Carrier

Estimation Algorithm

BPM Bilateral Prophylactic Mastectomy
BRCT Breast Cancer Carboxyl Terminus

BSE Breast Self Examination

BSO Bilateral Salpingo Oopherectomy

CBE Clinical Breast Examination

CORE trial Continuing Outcome Relevant to Evista trial

DCIS Ductal Carcinoma In situ

FDA Food and Drug Administration
HRT Hormone Replacement Therapy

IBIS International Breast Cancer Intervention Study

IBR Immediate Breast Reconstruction

LCIS Lobular Carcinoma In Situ

MORE trial Multiple Outcomes of Raloxifene Evaluation trial

MRN Mre11-Rad50-NBS1

NBSI Nijmengen Breakage Syndrome 1

NCCN National Comprehensive Cancer Network

NCI National Cancer Institute

NSABP National Surgical Adjuvant Breast and Bowel Project

NSM Nipple Sparing Mastectomy

OCP Oral Contraceptive Pills

PTEN Posphate Tensin homologue on chromosome Ten

RAP80 Receptor associated Protein 80 DKAa

RCT Randomized Clinical Trials

RUTH trial Raloxifen use for the heart trial

SEER Surveillance, Epidemiology and End Results

SERM Selective Estrogen Receptor Modulator

SSM Skin Sparing Mastectomy

STAR trial Study of Tamoxifen and Raloxifene

WHI Women's Health Initiative Trial

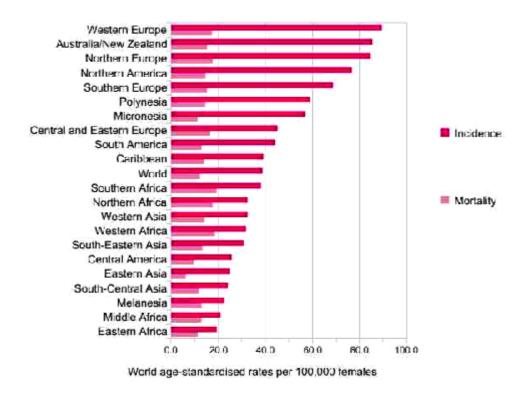
iii

LIST OF TABLES

Table No.	Title	Page
1	Screening criteria of Wilson and Junger	39

LIST OF FIGURES

Fig. No.	Title	Page
1	Age-standardized breast cancer incidence and mortality rates	2
2	Examples of variation in mammographic density	16
3	Increased risk of breast and ovarian cancer in BRCA mutation carriers	18
4	Schematic structure of BRCA1 and BRCA2 genes	20
5	The role of BRCA proteins in repairing damaged DNA	22
6	The full perimeter of breast tissue should be evaluated during the clinical breast examination	50
7	Position of Patient and Direction of Palpation for the CBE.	51
8	Levels of Pressure for Palpation of Breast Tissue	52
9	BI-RADS 0	57
10	BI-RADS Category 1	58
11	BI-RADS Category 2	59
12	BI-RADS Category 3	60
13	BI-RADS Category 4	61
14	BI-RADS Category 5	62
15	BI-RADS Category 6	63
16	MRI pre injection image and images after contrast injection of a women with IDC	74
17	The isulin like growth fator axis (IGF)	88


EPIDEMIOLOGY

Incidence and mortality rates world wide

Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death in females worldwide, accounting for 23% (1.38 million) of the total new cancer cases and 14% (458,400) of the total cancer deaths in 2008. About half the breast cancer cases and 60% of the deaths are estimated to occur in economically developing countries. In general, incidence rates are high in Western and Northern Europe, Australia/New Zealand, and North America; and low in sub-Saharan Africa and Asia (Fig. 1). The factors that contribute to the international variation in incidence rates largely stem from differences in reproductive and hormonal factors and the availability of early detection services (*Jemal A et al, 2010*).

The number of deaths as a percentage of incident cases in 2008 was 48% in low-income, 40% in low middle- income, and 38% in high-middle-income countries, while it was 24% in high-income countries according to the most recent Globocan/IARC data (Fig 1) (*Ferlay J et al, 2010*).

In the United States, the average lifetime risk of breast cancer has been estimated at 12.3% (i.e., 1 in 8 women). In 2009, an estimated 194,280 cases of invasive breast cancer (192,370 women and 1,919 men) and 62,280 cases of female carcinoma in situ of the breast will be diagnosed in the United States with 40,610 death from invasive breast cancer predicted (*Jemal A et al, 2009*).

Figure 1. Age-standardized breast cancer incidence and mortality rates by world area. Source: GLOBOCAN 2008 (*Ferlay J et al, 2010*).

Change of incidence and mortality

An analysis of data from the United States National Cancer Institute's (NCI's) Surveillance, Epidemiology, and End Results (SEER) registries showed that the age-adjusted incidence rate of breast cancer in women in the United States fell sharply by 6.7% in 2003 as compared with the rate in 2002. The decrease in breast cancer incidence seems to be temporally related to the ensuing drop in the use of hormone-replacement therapy (HRT) among postmenopausal women in the United States. The decrease was evident only in women who were 50 years of age or older and was

more evident in cancers that were estrogen-receptor positive than in those that were estrogen-receptor-negative (*Ravdin PM et al*, 2007).

Breast cancer mortality has been decreasing since 1990 by 2.3% per year overall. This decrease is largely attributed to the combination of mammography screening with improved treatment (*Berry DA et al, 2005*). However, this trend is primarily seen in white women, women with hormone receptor- positive tumors, and women younger than the age of 50 (*Jatoi I et al, 2007*).

Despite declining mortality rates and the recent reduction in incidence, breast cancer still represents a significant burden to the health care system. Interventions that could further reduce the number of cases not only would be the appropriate measure but could potentially be cost-efficient (*Tirona MT et al, 2010*).

Developing countries

In many developing countries, the incidence of breast cancer is now rising sharply due to changes in reproductive factors, lifestyle, and increased life expectancy. Today, more than half of incident cases occur in the developing world (*Beaulieu N et al, 2009*).

The most widely cited reason for the global increase in breast cancer is the "westernization" of the developing world. Social factors like smoking, alcohol, and obesity are becoming more common in the developing countries and are increasingly accepted, also the wider adoption of the western diet and lower exercise levels. Hormonal risk factors like delayed parity, and

reduced breast feeding are now being observed in low and middle-income countries (*Porter P*, 2008).

Available evidence on stage at diagnosis, though scarce, indicates that a very high proportion of cases in the developing world are detected in late stages (*Porter P, 2008*). In many underserved populations, a majority of women present with advanced disease. In contrast, in the United States the majority of cases are detected in localized stages of the disease (Stages I and II), a third is regionally advanced (Stage III), and only 5% are distant-stage metastatic (Stage IV) (*Horner M et al, 2009*).

Many reasons are given for the advanced stage at presentation and resultant poor survival rates in low- and middle-income countries: the stigma of breast cancer and the associated societal implications of its treatments (especially mastectomy) discourage women from seeking care early on; lack of knowledge about breast health; scant options for early detection due to limited access to routine care and examinations; and lack of access to mammography and to affordable, high-quality treatment options (Shulman NL et al, 2010).

In Egypt, breast cancer is the most common cancer among women, representing 18.9% of total cancer cases (35.1% in women and 2.2% in men) among the Egypt National Cancer Institute (NCI) series of 10 556 patients during the year 2001 (*Elatar I, 2001*).

Data reported by Gharbiah population based cancer registry (2001) indicated that breast cancer ranked first among females