

Synthesis of gold nanoparticles capped with constituents of some medicinal plants and its biological activity

A Thesis

"Submitted for the degree of Master of Science as a partial fulfilment for requirements of the master of Science"

By

Mariam Osama Abd-Allah Hamed
(B.Sc. Biochemistry/Chemistry, 2008)

Supervisors

Prof. Dr. Mostafa M. H. Khalil

Professor of Chemistry Chemistry Department, Faculty of Science, Ain Shams University

Prof. Dr. Ibrahim I. Mahmoud

Professor of Pharmacognosy Pharmacognosy Department, Faculty of Pharmacy, Helwan University

Synthesis of gold nanoparticles capped with constituents of some medicinal plants and its biological activity

Thesis submitted by

Mariam Osama Abd-Allah Hamed

For the degree of M.Sc of science in Inorganic chemistry

To

Department of Chemistry Faculty of Science Ain Shams University

Faculty of Science Chemistry Department

Approval sheet

Name of candidate: Mariam Osama Abd-Allah Hamed

Degree: M.Sc. Degree in Chemistry

Thesis Title: Synthesis of gold nanoparticles capped with constituents of some medicinal plants and its biological activity

This Thesis has been approved by:

1-Prof. Dr. Mostafa M. H. Khalil

2-Prof. Dr. Ibrahim I. Mahmoud

Approval

Chairman of Chemistry Department

Prof. Dr. Hamed Ahmed Younis Derbala

Statement

This thesis is submitted in partial fulfillment of the M.Sc Degree, Faculty of Science, Ain Shams University

In addition to the work carried out in this thesis the candidate, **Mariam Osama Abd Allah Hamed**, has attended postgraduate studies in the following topics and passed successfully in the final examination in the academic year 2009-2010:

621	Coordination Chemistry
622	Radiochemistry and Separation Techniques
623	Electrochemistry and Electrochemical Analysis
624	Group Theory and Computer Programming
625	Spectroscopic Methods for Structural and Analytical Chemistry
	TOEFL

Prof. Dr. Hamed A. Younis Madian

Chairman of Chemistry Department Faculty of Science-Ain Shams University

Dedication

To my parents Mr. and Mrs. Osama A. Hamed
The reason for what I am today.
Thanks for your continuous endless
love, support and care. Thanks because
you never stopped believing in me.

To my wonderful husband, Alí and my beautiful son, Fares

I am truly thankful for having you in my life. Thanks for your love, patience, wisdom and support during this work.

To my friend, Amal

Without your support I could not complete this task. Your encouragement have meant to me so much.

I also give special thanks to my brother and sister, for their kind support and contribution to the success of my studies.

Mariam Osama

Acknowledgement

First of all, I deeply grateful to Allah for giving me the wisdom, knowledge and strength to complete this work successfully.

I would like to express my deepest gratitude to my supervisor, **Prof. Dr. Mostafa M. H. Khalil,** Professor of Inorganic and Analytical, Faculty of Science, Ain Shams University, for giving me the opportunity to work in this field and for giving me the chance to be one of his students. I learned from his insight a lot. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my master study. He did not only guide this work and find time to discuss with me but also gave me the confidence to express my ideas freely. His leadership, support, attention to detail, hard work have set an example I hope to match some day. Actually he was more than a supervisor, he was a teacher who inspired me and pushed me forward.

Many thanks to **Prof. Dr. Ibrahim I. Mahmoud**, Professor of Pharmacognosy, Faculty of Pharmacy, Helwan University, for his help, supervising and support in the thesis.

I would also like to thank my Colleagues in the Chemistry Department, Faculty of Science, Ain Shams University for their help.

CONTENTS

	Page
Acknowledgement	i
List of tables	iii
List of figures	iv
Abstract	X
Chapter I : Introduction	
1.1. What is Nanotechnology?	1
1.2. Classification of nanomaterials	3
1.3. Metallic nanoparticles	7
1.3.1. Properties of metallic nanoparticles	9
1.3.2. Origin of surface plasmon resonance in noble metal NPs	11
1.3.3. General synthetic routes of metallic nanoparticles	17
I. Physical methods	20
II. Chemical methods	21
III. biological methods	26
1.4. Biosynthesis of gold nanoparticles using plant extracts	27
1.4.1. mechanisms of AuNPs formation using plant extracts	33
1.5. Rhus coriaria L. (sumaq fruits) aqueous extract	43
1.6. Laurus nobilis L. (laurel leaves) aqueous extract	45
Aim of work	47
Chapter II: Materials and Methods	
2.1. Material	48
2.2. Analytical instruments	48
2.2.1. UV-visible spectral analysis	48

2.2.2. Transmission electron microscopy (TEM)	48
2.2.3. X-Ray Diffraction	49
2.2.4. Fourier transform infrared spectroscopy	49
2.2.5. Thermogravimetric analysis	49
2.2.6. Dynamic light scattering (DLS)	50
2.2.7. Antimicrobial activity assay	50
2.3. Sample preparation	52
2.3.1. Preparation of sumaq extract	52
2.3.2. Preparation of laurel extract	52
2.4. One-step synthesis of gold nanoparticles using extract	et 52
2.5. Study of different variables on AuNPs synthesis	53
2.5.1. Effect of sumaq extract concentrations	53
2.5.2. Effect of laurel extract concentrations	53
2.5.3. Effect of pH of sumaq extracts	54
2.5.4. Effect of pH of laurel extract	55
2.6. Samples preparation for antimicrobial assay	55
2.6.1. Using sumaq extract	55
2.6.2. Using laurel extract	56
Chapter III: Synthesis of gold nanoparticles using RR	hus Coriaria
L. aqueous fruit extract	
3.1. UV–visible spectral analysis	57
3.1.1. Effect of extract concentration	57
3.1.2. Effect of contact time	64
3.1.3. Effect of extract pH	65
3.2. Dynamic light scattering (DLS)	73
3.3. The x-ray diffraction study	74
3.4. Fourier transform infra-red spectroscopy (FTIR)	75

3.5. Thermal gravimetric analysis	78
3.6. Antimicrobial activity	79
Chapter IV : Synthesis of gold nanoparticles using Laurus Nobilis	
L. aqueous leaf extract	
4.1. UV–visible spectral analysis	83
3.1.4. Effect of extract concentration	83
3.1.5. Effect of contact time	90
3.1.6. Effect of extract pH	90
4.2. Dynamic light scattering (DLS)	97
4.3. The x-ray diffraction study	98
4.4. Fourier transform infra-red spectroscopy (FTIR)	99
4.5. Thermal gravimetric analysis (TGA)	102
4.6. Antimicrobial activity	102
Conclusion	108
Summary	110
References	116
Arabic summary	1

List of tables

Table		Page
Table (1.1)	summarizes some reports for plant extract mediated synthesis of metal nanoparticles.	28
Table (2.1)	calculations of final concentration of sumaq extract (variable) and HAuCl ₄ (constant)	53
Table (2.2)	calculations of final concentration of laurel extract (variable) and HAuCl ₄ (constant)	54
Table (2.3)	Detailed preparation of the sumaq extract and synthesized AuNPs samples used for antimicrobial assay	55
Table (2.4)	Detailed preparation of the fennel extract and synthesized AuNPs samples used for antimicrobial assay	56

List of figures

Figure		Page
Fig. (1.1)	Some Common Objects in Nanometer	3
Fig. (1.2)	Differences in band gab between bulk material and nano sized material	11
Fig. (1.3)	Schematic illustration of the collective oscillation of the conduction electrons of a	13
	spherical gold colloid in response to the	
	electric field of incident light.	
Fig. (1.4)	Gold nanoparticles absorption of various sizes and shapes.	16
Fig. (1.5)	Schematic diagram of gold nanoparticle growth.	18
Fig. (1.6)	Schematic representation of the formation of	19
	nanostructures via the top-down and bottom- up approaches.	
Fig. (1.7)	Scheme for AuNP synthesis using the	23
E: - (1.0)	Turkevich method	27
Fig. (1.8)	General flow chart for the biological synthesis of metallic nanoparticles	27
Fig. (1.9)	Reducing and stabilizing agents in plant	35
	phytochemicals that used for the synthesis of	
	metal nanoparticles.	
Fig. (1.10)	NAD+ and Its Reduced Form (NADH)	37
Fig. (1.11)	Formation of gold nanoparticles through	37
	using electron transfer reaction	
Fig. (1.12)	Ascorbic acid reduction mechanism of gold	38
	and silver ions to obtain Ag0 and Au0 NPs	1.0
Fig. (1.13)	Au3+ reduction mechanism by flavanoids,	40
T	myricetin and gallic acid	4.1
Fig. (1.14)	Schematic diagram of the formation of	41
	phyllanthin stabilized gold nanoparticles	4.5
Fig. (1.15)	Possible chemical constituents of plant	42

Figure		Page
	extract responsible for the bioreduction of metal ions	
Fig. (1.16)	Chemical structures of Sumaq phytochemicals	44
Fig. (1.17)	Chemical structures of Laurel phytochemicals	46
Fig. (3.1a)	The color change of colloidal gold solution formed using different concentrations of sumaq extract	60
Fig. (3.1b)	Uv-vis spectra of gold nanoparticles using constant HAuCl ₄ concentration (1.4x10 ⁻⁴ M) (5x10 ⁻³ w/v) with low sumaq extract concentrations	60
Fig. (3.1c)	Uv-vis spectra of gold nanoparticles using constant HAuCl ₄ concentration (1.4x10 ⁻⁴ M) (5x10 ⁻³ w/v) with high sumaq extract concentrations.	60
Fig. (3.2)	TEM measurements of AuNPs synthesized through using 5x10 ⁻³ (w/v) HAuCl ₄ and 0.02% w/v sumaq extract concentration	61
Fig.(3.3)	TEM measurements of AuNPs synthesized through using 5x10 ⁻³ (w/v) HAuCl ₄ and 0.03% w/v sumaq extract concentration	62
Fig. (3.4)	TEM measurements of AuNPs synthesized through using 5x10 ⁻³ (w/v) HAuCl ₄ and 0.2% w/v sumaq extract concentration	63
Fig.(3.5)	(a) shows the UV-vis spectra recorded from reduction of 5x10 ⁻³ w/v HAuCl ₄ using 0.03% w/v sumaq extract at various time intervals of 5 minutes for 90 minutes. (b) Relation between time and maximum absorbance at wavelengths 537 nm.	64
Fig.(3.6a)	shows the Uv-vis spectra of AuNP synthesized at pH values 1-9	68

Figure		Page
Fig.(3.6b)	shows the Uv-vis spectra of AuNP synthesized at pH values 9-11	68
Fig.(3.6c)	The color changed from blue in acidic medium to wine red in basic medium.	68
Fig.(3.7)	TEM images of AuNPs synthesized by addition of 5x10-3 (w/v) HAuCl4 to sumac extract (0.03% w/v) at pH 2.9 of the sumaq extract.	69
Fig.(3.8)	TEM images of AuNPs synthesized by addition of 5x10-3 (w/v) HAuCl4 to sumac extract (0.03% w/v) at pH 7.4 of the sumaq extract.	70
Fig.(3.9)	TEM images of AuNPs synthesized by addition of 5x10 ⁻³ (w/v) HAuCl ₄ to sumac extract (0.03% w/v) at pH 9 of the sumaq extract.	71
Fig.(3.10)	Schematic diagram illustrate effect of pH on AuNPs synthesis.	72
Fig.(3.11)	A histogram of size distribution of AuNPs synthesized by sumaq.	73
Fig.(3.12)	The X-ray diffraction (XRD) patterns of gold nanoparticles synthesized using Sumaq fruit extract.	74
Fig.(3.13)	Chemical structures of Sumaq phytochemicals	76
Fig.(3.14)	FTIR of (a) Sumaq fruits and (b) capped AuNPs	77
Fig.(3.15)	TGA of the capped nanogold	78
Fig.(3.16)	Antimicrobial activities of different concentrations of sumaq fruit extract (S2 & S4) AuNPs from different solutions (S1, S3, S5 & S6) against Gram Positive bacteria (Bacillus subtillus & Staphylococcus aureus), Gram negative bacteria (E.Coli,	81

Figure		Page
	Pseudomonas Aeruginosa & Salmonella typhimurium) and Yeast (Candida albicans).	
Fig.(3.17)	Antimicrobial activities of different	82
	concentrations of laurel leaf extract (S2 & S4) AuNPs from different solutions (S1, S3,	
	S5 & S6) against (a) Candida albicans (b)	
	Staphylococcus aureus (c) Bacillus subtillus	
	(d) Salmonella typhimurium (e) E.Coli (f)	
	Pseudomonas Aeruginosa.	
Fig. (4.1a)	The color change of colloidal gold solution	86
	formed using different concentrations of laurel extract	
Fig. (4.1b)		86
Fig. (4.1b)	Uv-vis spectra of gold nanoparticles using constant HAuCl4 concentration (1.4x10 ⁻⁴ M)	80
	$(5\times10^{-3} \text{ w/v})$ with low laurel extract	
	concentrations	
Fig. (4.1c)	Uv-vis spectra of gold nanoparticles using	86
	constant HAuCl4 concentration (1.4x10 ⁻⁴ M)	
	(5x10 ⁻³ w/v) with high laurel extract	
	concentrations	
Fig. (4.2)	TEM measurements of AuNPs synthesized	87
	through using $5x10^{-3}$ (w/v) HAuCl ₄ and 0.1%	
Fig. (4.2)	w/v laurel extract concentration	88
Fig. (4.3)	TEM measurements of AuNPs synthesized through using 5x10 ⁻³ (w/v) HAuCl ₄ and 0.6%	00
	w/v laurel extract concentration	
Fig. (4.4)	TEM measurements of AuNPs synthesized	89
g (·)	through using 5x10 ⁻³ (w/v) HAuCl ₄ and 1%	
	w/v laurel extract concentration	
Fig. (4.5)	(a) shows the UV–vis spectra recorded from	90
	reduction of 5x10-3 w/v HAuCl4 using	
	0.6% w/v laurel extract at various time	
	intervals of 5 minutes for 90 minutes	
	(b) Relation between time and maximum	