List of Contents

Ti	tle Page
•	List of Abbreviations
•	List of Tables III
•	List of FiguresVI
•	List of Diagrams IX
	Introduction
	Aim of the Work
_	
•	Review of Literature General Features of Hirschsprung's disease
•	Methodology 58
•	Results
•	Discussion 82
•	Summary 86
•	Conclusion and Recommendations87
•	References89
•	Arabic Summary

List of Abbreviations

AchE.....Acetylcholinesterase **AD**Autosomal dominant **AR**Autosomal recessive BMI.....Body Mass Index **CI**.....Confidence interval **CNS**Central nervous system **DNA**Deoxyribonucleic acid **DS**.....Down syndrome **ECE-1** Endothelin converting enzyme 1 **EDN3** Endothelin 3 **EDNRB**Endothelin receptor type B **ENS**Enteric nervous system **GDNF**.....Glial cell-derived neurotrophic factor **GLU**Glucose transporter H/EHematoxylin and Eosin **HAEC**.....Hirschsprung-associated enterocolitis **HD**Hirschsprung's Disease IBDInflammatory Bowel Disease ICCInterstitial cells of Cajal **MEN 2**.....Multiple Endocrine Neoplasia 2 OROdds Ratio PHOX2BPaired-like homeobox 2b **QoL**.....Quality of Life SOX10Sex determining region Y box 10 **SRY**Sex determining region Y **TCA**Total colonic aganglionosis

List of Abbreviations

TZ.....Transitional Zone
WHO.....World Health Organization

List of Tables

Table No.	Title Page	,
Table (1):	Epidemiology and recurrence risk of HD	
Table (2):	Dilator size by age45	
Table (3):	Telephone questionnaire scores for patients older than 3 years	
Table (4):	HAEC score (the Langer score)53	
Table (5):	Telephone questionnaire scores for patients HAEC, Hirschprung-associated enterocolitis	
Table (6):	Demographic characteristics of studied cases	
Table (7):	Specimen length (cm) of studied cases 65	
Table (8):	Outcome among the studied cases 66	
Table (9):	Comparison between bowel outcomes regarding demographic data and specimens length	
Table (10):	Transitional zone Histopathological Features	
Table (11):	Comparison between bowel outcomes regarding Transitional zone pathology Ganglion cells71	
Table (12):	Comparison between bowel outcomes regarding Transitional zone pathology: Auerbach's and Meissner's nerve bundle	

List of Tables

Table No.	Title Page
Table (13):	Show that: Mixed inflammatory cells were significantly more frequent among cases with postoperative Group B
Table (14):	Wide zone pathology among the studied cases
Table (15):	Comparison between bowel outcomes regarding wide zone pathology: Auerbach's nerve bundle Meissner's nerve bundle
Table (16):	Comparison between bowel outcomes regarding wide zone pathology: Inflammatory cells
Table (17):	Diagnostic performance of wide zone nerve bundles mean diameter in prediction of Group B
Table (18):	Diagnostic Characteristics of wide zone Auerbach'e nerve bundles mean diameter ≥68.0 µm in prediction of Group B

Figure No.	Title	Page
Fig. (1):	Diagrams showing different types of	
Fig. (2):	Clinical picture of HD: in 2-day-old infant with marked abdominal distention and failure to pass meconium. Suction rectal biopsy confirmed HD	l 3
Fig. (3):	Water-soluble contrast enema (AF and lateral views) demonstrating a transition zone in the recto-sigmoid colon	ı I
Fig. (4):	Retention of contrast on a24-hour post-evacuation film	
Fig. (5):	A) In the child without HD undergoing anorectal manometry, the recto-anal inhibitory reflex is normal. (B) A child with HD is seen to have abnormally increased contraction of the anal canal and no relaxation of the internal sphincter with rectal distention	, 3 1 1
Fig. (6):	The fetal bowel is colonized by migration from vagal	
Fig. (7):	Anatomy of the enteric nervous system showing different layers of the intestinal wall	f

Figure No.	Title	Page
Fig. (8):	No; HD Hematoxylin and eosin stair (100×). Formalin fixation and hematoxylin and eosin-stained section	1 1
Fig. (9A):	HD Hematoxylin + eosin stain Formalin fixation and hematoxylin + eosin-stained section (50×)	-
Fig. (9B):	HD Hematoxylin and eosin (100×) Hematoxylin and eosin-stained section; transitional zone	l
Fig. (10):	Diff-Quik (400×). Frozen preparation - intra - operative Diff-Quik-stained section normal	l
Fig. (11):	Non Hirschsprung disease: Normally innervated rectal mucosa	
Fig. (12):	Hirschsprung disease: Recta	
Fig. (13):	Thickness of nerve fibres and perineurial staining with S100 and Glut1, respectively	1
Fig. (14A):	Cholinesterase staining in normal colon	32
Fig. (14B):	Cholinesterase staining in color affected by Hirschsprung disease	
Fig. (15):	a): Swenson's full-thickness rectoring sigmoid dissection. (b) Soave's endorectal dissection. (c) Rectorectal pouch (Duhamel)	s 1

Figure No.	Title	Page
Fig. (16):	Mobilization of colon with division of mesentery	
Fig. (17):	a) Operations for long-segment Hirschsprung disease Martin procedure. B) Operations for long- segment Hirschsprung disease Kimura procedure	-
Fig. (18):	Algorithm for care of the post pull-through problem patient	
Fig. (19):	Enterocolitis can be a major cause of morbidity and mortality, both before any operative procedure for Hirschsprung disease and in the postoperative period	
Fig. (20A):	Guideline for the diagnosis of HAEC.	54
Fig. (20B):	Guideline for the management of HAEC based on grade for Guideline of HAEC)
Fig. (21):	Image analyzer Meissner's	67
Fig. (22):	Image analyzer Aurebach's	68
Fig. (23):	The submucosal Meissner's nerve bundles appeared prominent	
Fig. (24):	A) Normal looking ganglionic cells. B) Abnormal looking ganglionic	
Fig. (25):	Diseased Auerbach's nerve bundles	74
Fig. (26):	Auerbach's with normal and abnormal ganglionic X400	

Figure No.	Title	Page
Fig. (27):	A) Normal Auerbach's bundle.	
	B) Hypertrophied Auerbach's n bundle	

List of Diagrams

Diagram	No. Title	Page
Diag. (1):	Post-operative bowel condition among the studied cases	
Diag. (2):	Comparison between bowel outcomes regarding wide zone nerve bundle mean diameter	
Diag. (3):	Comparison between bowel outcomes regarding wide zone inflammatory cells	
Diag. (4):	ROC curve for wide zone nerve bundles mean diameter in prediction of Group B from Group A	

Abstract

Background: Despite the increased knowledge of Hirschsprung's Disease (HD) by advances in the understanding of the embryogenesis and surgical care, still, significant complications continue to be associated with the different procedures. However the most annoying complications are the persistent constipation and the recurrent enterocolitis induced by transitional zone pull-through or residual aganglionosis. Nevertheless in literature review both were mentioned as the major cause of redo-pullthrough⁽¹⁾.

Aim of the Work: The aim of this study is to define the characteristic histopathological features of the transitional zone in patients with HD, and it is impact on the clinical outcome.

Methodology:

Study: Retrospective and prospective cohort study was conducted to study the histopathological features (regarding ganglion cells and nerve bundle) of the transitional zone in patients with HD from 2010-2016, and its impact on the clinical outcome. Was performed in Pediatric surgery department in Ain Shams university hospitals in the period between 2015-2016.

Results Clinical outcome postoperatively among the 35 studied cases 71.4% were of good outcome (group A) they have normal or semi normal bowel habits after surgery; while (group B) 28.6% had recurrent bowel symptoms. The two groups were compared with their histopathologicaly findings. The significant findings were found in group B: the histopathological findings in the proximal wide assumed to be healthy part Ganglion cells are present in all cases and are classic, inspite of that Aurbach's nerve bundle show focal disarray in 28.6% and are unmylinated in 65.7% ,moreover their mean diameter 65.8±16.2 (μm) with range of 40.5–117.2 (μm). Meissner's nerve bundle in the same specimens show mean diameter 36.0±10.4 (μm) with range 11.5–62.8 (μm). Cases with postoperative group B had significantly more frequent focal disarray of nerve bundles, acute& mixed inflammatory cells and larger nerve bundles diameter.

Conclusion: Wide zone Auerbach'e nerve bundles mean diameter ≥68.0 µm had high sensitivity & (Negative Predictive value) NPV and other diagnostic characteristics moderate in prediction of abnormal bowel.

Keywords: Hirschsprung's disease postoperative outcome, histopathological features Transition-zone pull-through Residual aganglionosis Redo pull-through operation.

INTRODUCTION

Hirschsprung's disease HD is congenital a megacolon characterized by the absence of ganglion cells in the myenteric and submucosal plexuses of the intestine (Jacob, 2014). HD incidence approximately 1:5,000 live births (Jeffrey and Levitt, 2017), (Matthew et al, 2017), (Jacob, 2014), (Lake and Heuckeroth, 2013). Moreover HD is relatively the most common cause of intestinal obstruction in the newborn (Jacob, 2014), (Pure, 2011). The first description in the modern medical literature of Hirschsprung's disease was in 1886 by a pediatrician Harald Hirschsprung, from Copenhagen, who described two cases. However the first description of a reconstructive operation for HD was in 1949 by Swenson, but still there were technical difficulties in small infants and many children who presented with debilitated and malnourished state (Jacob, 2014). Nevertheless the staged surgical approach has changed dramatically over the past three decades, and transition to primary pull-through is now the predominant. As the transanal pull-through is now used by a large proportion of pediatric surgeons. Moreover the minimal invasive surgery is used to facilitate both the diagnosis of HD and the pull-through procedure, therefore, also become one of the common pull-through procedure (Teitelbaum and Coran, 2013).

The diagnoses of HD is usually based on clinical history, radiological studies, anorectal manometry and in particular rely on histopathological examination of rectal wall biopsy (*Pure*, 2011). The gold standard for the diagnosis is the absence of ganglion cells in the submucosal and myenteric plexuses on histological examination. Most of patients will also have evidence of hypertrophied nerve trunks, although this finding is not always present, particularly in children with total colonic HD or a very short aganglionic segment HD (*Jacob*, 2014).

Despite the increased knowledge of HD by advances in the understanding of the embryogenesis and surgical care, significant complications continue to be associated with the different procedures (*Teitelbaum and Coran*, 2013). However the most annoying ones are the late complications include conistipation, enterocolitis, incotenance anastomatic problems, adhesive bowel obstruction and urogenital complications (*Pure*, 2011). However these long-term problems mandate close follow up of these patients; at least until they are through the toilet training process, in order to identify and provide timely treatment for these problems (*Jacob*, 2012).

AIM OF THE WORK

The aim of this study is to define the characteristic histopathological features of the transitional zone in patients with HD, and it is impact on the clinical outcome.