

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار المنافلام بعيدا عن الغبار المنافلام بعيدا عن الغبار المنافلام بعيدا عن الغبار المنافلام من ١٥-٠٠٠ مئوية ورطوبة نسبية من ٢٥-٠٠٠ مئوية ورطوبة نسبية من ١٥-٠٠٠ مئوية ورطوبة ورطوب

بعض الوثائق

بة تالفة

and of the state of

بالرسالة صفحات لم

ترد بالاصل

B0109

AIN SHAMS UNIVERSITY FACULTY OF SCIENCE PHYSICS DEPARTMENT

A THESIS FOR M.SC. DEGREE IN PHYSICS

USE OF NEUTRON ACTIVATION ANALYSIS IN THE ASSAY OF NUCLEAR FUEL

BY

HASSAN IBRAHIM HASSAN DEMONSTRATOR OF PHYSICS AT THE ATOMIC ENERGY AUTHORITY

Prof.Dr. M.N.H.Comsan Nassef Companion Chairman of Cyclotron Project Atomic Energy Authority

Prof.Dr. M.Elmorsy Abd-Elmohsen M. Elm asset

Professor of Nuclear Physics
Faculty of Science, Ain Shams University

Assistant Professor of Nuclear Physics
Nuclear Physics Department
Atomic Energy Authority

بسمرالكه الرحن الرحيمر وعلمكما لمتكزتعلم وكازفضل الله عليكء صدق الله العظيم

ACKNOWLEDGMENTS

After great thanks to God, I would like to give my appreciation, gratitude and sincere thanks to all persons who helped me to complete this work:

Professor Dr. M.N.Comsan

For suggesting the point of research, his assistance to overcome all the problems that I found during research, great encouragement to get as much of knowledge and experience, fruitful discussion and valuable supervision of this work.

• Dr. Ahmed Azzam

For his kind supervision, giving a lot of time and attention during the experimental part and in the preparation of the thesis to its final form. His kind relationship with me and his efforts in solving the problems in concise time eases the cooperation to finish the required aim of this thesis

• Professor Dr. M. Elmorsy Abd-Elmohsen

For his supervision, great interest to the thesis, kind encouragement and useful discussion about this work. I hope also to continue cooperation with him in the future

• Professor Dr. Tabarak Nouer

For her permission as a head of Nuclear Physics Department to use all the facilities of the laboratory with her kind encouragement.

• Professor Dr. Angele F. Beshay

For her help to get the required samples from Metallurgy Department.

• Technicians Group of the Laboratory

Mr. Aly Abd-Ellatif, Mr. Gamal Mosaad, Mr. Saber Tayoor, Mr. Mohamed Dawoud and Mr. Omar Nour Eldeen, for their help to complete the measurements and solve the technical problems of the laboratory during this work.

• My family

Specially my mother and my wife.

USE OF NEUTRON ACTIVATION ANALYSIS IN THE ASSAY OF NUCLEAR FUEL

HASSAN IBRAHIM HASSAN ATOMIC ENERGY AUTHORITY

ABSTRACT

A literature review on methods of determination of the uranium contents and enrichment in the nuclear reactor fuel samples is given. Most of the International Atomic Energy Agency (IAEA) reports and several laboratory researches that were interested in that field are covered.

The activation and detection facilities in Laboratory of Neutron Activation Analysis at the Nuclear Physics Department, AEA were used. The laboratory contains 14 MeV neutron generator system of neutron yield 1×10^{11} n/sec and pneumatic system for sample transfer. The neutron flux of the system was measured using Cu-foil activation and aluminum activation techniques.

Uranium samples of different shapes (pellet, powder) and different compounds (UO₂ and U-Nitrate) were assayed using passive and active techniques. Sodium iodide, HPGe detectors and associated electronics were used in the technique of measuring the neutron flux and detection of gamma spectra of the samples. The uranium contents of ²³⁸U and enrichment of ²³⁵U were determined using the photopeak area of characteristic gamma lines recorded on the multichannel analyzer.

The experimental results were analyzed and compared to the calculated data. Due to the effect of self-absorption of the samples for gamma rays, attenuation corrections were taken into consideration.

CONTENTS

ACI	ACKNOWLEDGEMENT			
ABS	ABSTRACT			
CON	CONTENTS			
	ΓOFTA		viii xii	
	MARY		xiv	
		GENERAL INTRODUCTION		
1.1	Short	Overview	1	
	1.1.1	System of Accounting for and Control of Nuclear Material	4	
1.2	Hrani	um Compounds Used in the Nuclear Fuel	8	
1.3		estructive Assay (NDA) of Nuclear Materials		
110	1.3.1		10	
		Uses of NDA	11	
	1.3.3		13	
	1.3.4		15	
1.4	Aim o	f this work	15	
		Chill Sik II		
	MET	HODS OF NUCLEAR FUEL ASSAY		
2.1	Passiv	e Gamma Ray Assay	17	
	2.1.1	J =	17	
	2.1.2	,	21	
		(I) Absolute efficiency	21	
		(II) Intrinsic efficiency	23	

		(III) Relative efficiency	24
		(IV) Manufacturer terminology of efficiency	24
	2.1.3	Self-Attenuation Correction Factor	25
		(I) The fundamental law of gamma ray attenuation	26
		(II) Mass attenuation coefficient	27
		(III) Interaction processes	28
		(IV) Corrected Rates	29
		(V) Necessary assumptions for determination of self-attenuation correction	30
		(VI) Methods for determining the sample linear attenuation coefficient	32
		(VII) Important parameters of the self attenuation correction factor	34
		(VIII) Analytical far field forms for the self attenuation correction factor	35
		(IX) A useful one-dimensional model	38
		(X) Interpolation and extrapolation of transmission	40
		(XI) Infinite-sample gamma measurement technique	40
2.2	Gener	ral Topics of Active Neutron Assay	42
	2.2.1	Production of Neutrons	45
		(I) Radioisotope neutron source	45
		(II) Fission neutron source	48
		(III) Reactors as neutron sources	49
		(IV) Charged particle accelerators for neutron production	50
		(V) Neutron generators	
	2.2.2	Neutron Detectors	53
ž		Will State In	
		EXPERIMENTAL TECHNIQUE	
3.1		ute Efficiency of Gamma-Ray Detection	55
	System		
	3.1.1	Experimental Set-up	55
	3.1.2	Efficiency Curve	56

3.2 3.3		rement of Attenuation Te Technique for Measurement of Uranium	56 57
	Conte		
	3.3.1	Determination of the Mass of Uranium	57
	3.3.2	Determination of Enrichment	58
3.4	Neutr	on Activation Technique	59
	3.4.1	Neutron Generator Description	59
	3.4.2		67
	3.4.3		67
	3.4.4	Measurement of Neutron Yield Using Thin	68
		Foil Technique	
3.5	Activa	ation Analysis With 14-MeV Neutrons for the	71
-		um samples	
		am samples	
		RESULTS AND DISCUSSION	
4.1	Samp	les Description	73
4.2	Detect	tor Parameters	74
	4.2.1	Detector Resolution	74
	4.2.2	Absolute Efficiency	74
4.3	Atten	uation Correction Factor CF(AT)	84
4.4	Passiv	ve Technique Results	87
	4.4.1	Determination of The Mass of ²³⁸ U	90
	4.4.2	Determination of Uranium Enrichment	90
4.5	Active	e Technique Results	91
	4.5.1	Measurements of the Fat Neutron Flux	92
	4.5.2	Irradiation Parameters	95
	4.5.3	Gamma Spectra of Irradiated Samples	95
	4.5.4	Estimation of the Uranium Mass and Enrichment	96
CON	CLUSIC	ON	108
REF	ERENCI	ES	112
لخص	ما		
شکر			

LIST OF FIGURES

Fig. 1.1	Amounts of Plutonium and highly enriched uranium under safeguards.	3
Fig 1.2	Amounts of natural uranium and low enriched uranium under safeguards.	3
Fig. 1.3	Simplified Diagram of the Nuclear Fuel Cycle.	5
Fig 1.4	Verification activities of inspectors or of the Safeguards analytical Laboratory	6
Fig. 1.5	Combined application of containment and surveillance	7
Fig. 1.6	Diagram of a process for producing uranium metal from the raw metal	
Fig. 1.7	Classification of nondestructive assay (NDA) techniques used for the measurement of fissionable materials	9
Fig. 2.1	Typical arrangement of components in a scintillation detector.	14
Fig. 2.2	Configuration of a planar HPGe detector.	21
Fig. 2.3	The fundamental law of gamma ray attenuation.	26
Fig. 2.4	Total mass attenuation coefficients (without coherent scattering contribution) vs. energy for nine elements ranging in atomic number Z from 1 to 94 [J. H. Hubbell 1969]	31

Fig. 2.5	Counting geometry for a slab-shaped sample with coordinates and dimensions for use in deriving the far field correction factor.	37
Fig. 2.6	(a) Commonly used vertical assay geometry(b) One-dimensional model is appropriate for computing CF(AT)	39
Fig. 2.7	The basic elements of a gamma-rays uranium-enrichment measurement setup.	41
Fig. 2.8	Schematic diagram of experimental arrangement for active interrogation (showing the case of neutron interrogation and neutron or gamma rays detection)	43
Fig. 2.9	Experimental arrangement for delayed neutron assay of SEFOR fuel rods [Augustson et al. 1970]	43
Fig. 2.10	Neutron spectra from (α,n) sources	47
Fig. 2.11	Prompt neutron spectrum fronm spontaneous ission of Cf-252	48
Fig. 2.12	Energy dependence of the total cross-section for the D-D and D-T reactions	52
Fig. 3.1	Experimental set-up for absolute efficiency calibration of the gamma ray detection system	55