Serum Interferon Gamma Induced Protein-10 in Atopic and Non Atopic Infants with Wheezy Chest

Thesis

Submitted for Partial Fulfillment of Master Degree *In Pediatrics*

By

Amaal Mohammad El-Hadary

M.B, B.Ch. (2009)

Supervised by

Prof. Elham Mohammad Hossny

Professor of Pediatrics
Faculty of Medicine - Ain Shams University

Dr. Rasha Hassan El-Owaidy

Lecturer of Pediatrics
Faculty of Medicine - Ain shams University

Dr. Neama Lotfy Mohamed

Lecturer of Clinical Pathology Faculty of Medicine - Ain shams University

Abstract

Introduction: Wheezing is common throughout infancy and childhood except in the neonatal period when it is relatively rare. About 19% of 10-year-old children experience wheezing with an average age of onset of 3 years. Bronchiolitis and preschool recurrent wheeze (PSRW) are common pediatric problems causing significant morbidity and mortality in the first years of life. Infants and toddlers with atopy and recurrent wheeze early in life are at greater risk for childhood asthma than non-atopic subjects who wheeze.

Aim of the Work: We sought to investigate serum levels of IP-10 among infants presenting with wheezy chest to anticipate its role in infant wheezes, relation to severity of wheezing illness, presence of signs of respiratory infection or evidence of atopy.

Methodology: This is a cross-sectional controlled study that was carried out in the emergency department and the outpatient clinic of the Children's Hospital, Ain shams university, Cairo, Egypt during the period from December 2014 to March 2015. Informed consent was obtained from parents or care giver of patients before enrolment in the study and the study protocol gained approval from the Ethics' Committee of the Pediatric Department, Ain Shams University.

Results: The study enrolled 90 infants as a stratified non-random sample that is divided into three groups. Each group recruited its sample consecutively. Group A: (n=40): This group included 40 infants who were presented with wheezy chest. Group B (n=25): This group included 25 infants with clinical features suggestive of upper or lower respiratory tract infections (as low grade fever, cough, rhinorrea, conjunctivitis or croup) within 3 days before presentation, and without patient or family history suggestive of allergy. Group C (n=25): This group included 25 healthy infants without history of wheezes and without symptoms of infection or allergic manifestations at time of enrolment. They were enrolled from the outpatient clinic while presenting for nutritional assessment or for circumcision in males.

Conclusion: our data suggest a possible link of serum IP-10 levels to infant wheezes which were not explained exclusively by the association with viral infection. These data might denote a possible future therapeutic role for IP-10 antagonist in severe cases of infant wheezing that are resistant to conventional therapy.

Recommendations: Further wider scale studies are recommended for better elucidation of the IP-10 expression and role in wheezing illness at different age groups.

Investigating various respiratory viral, bacterial, and fungal pathogens in relation to serum IP-10 levels could be worthwhile.

Future studies may be required to investigate the impact of targeting IP-10 in severe cases of pediatric asthma or other wheezing illnesses.

Keywords: Serum Interferon Gamma, Protein-10, Atopic and Non Atopic Infants,h Wheezy Chest

List of Contents

Title Page		
•	List of Abbreviations	
•	List of TablesV	
•	List of FiguresVII	
•	Introduction and Aim of the Work 1	
•	Review of Literature	
	- Infant Wheezing3	
	- Interferon gamma inducible protein of 10 (IP-10)	
•	Subjects and Methods38	
•	Results47	
•	Discussion	
•	Recommendations	
•	Summary 69	
•	References72	
•	Arabic Summary	

AEC Absolute Eosinophilic Count

ALC..... Absolute Lymphocytic Count

ALSPAC Avon Longitudinal Study of Parents and Children

ANC Absolute Neutrophilic Count

API...... Asthma Predictive Index

BALF..... Bronchial Alveolar Lavage Fluid

BEC Bronchial Epithelial Cell

CBC Complete Blood Count

CCL CC Chemokine Ligand

CCL24..... Eotaxin-2

CCL5......RANTES

CL11 Eotaxin

CNS..... Central Nervous System

COPD Chronic Obstructive Pulmonary Disease

CoV...... Coronavirus

CRP...... C Reactive Protein

CT...... Computed Topography

CTLs.....cytotoxic T lymphocyte

CXCL CXC Chemokine Ligand

CXCL-9 CXC Ligand 9

CXCL10 IFN-γ-InducibleProtein10

CXCR3...... C-X-C Motif Receptor 3

CXCR4...... C-X-C Motif Receptor 4

CXCR8...... C-X-C Motif Receptor 8

DC..... Dendritic Cell

ECG Electrocardiography

EDTA Ethylene Diamine tetra Acetic Acid

ELISA Enzyme - Linked Immunosorbent Assay

ELR motif..... Amino acid sequence Glu-Leu-Arg

EPW..... Early-Onset Persistent Wheezers

ETS..... Environmental Tobacco Smoke

ETW..... Early-Onset Transient Wheezers

FGF..... Fibroblast Growth factor

GAGs..... Glycosaminoglycans

GM-CSF Granulocyte - Macrophage Colony-Stimulating

Factor

HAART..... Highly Active Anti-retroviral Therapy

HCV Hepatitis C Virus

HDM House Dust Mite

HEV Human EnteroVirus

HIV Human Immunodeficiency Virus

HMPV Human MetapneumoVirus

HSV-2 Herpes Simplex Virus type 2

ICAM...... Intercellular Adhesion Molecule

ICS...... Inhaled Corticosteroids

IFN-yInterferon-y

IFN- α Interferon- α

IFN- β Interferon- β

IgE..... Immunoglobulin E

IL Interleukin

IL-2..... Interleukin2

IP-10.....Interferon-y Inducible Protein of 10 Kilodaltons

IPW Intermediate-Onset Persistent Wheezers

IQR Interquartile Range

I-TAC/CXCL11 Interferon - Inducible T - cell Chemoattractant

iTregs Induced T Regulatory Cell

ITW Intermediate-Onset Transient Wheezers

kB...... Nuclear Factor Kappa B

LOW..... Late-Onset Wheezers

LTBI Latent TB Infection

LTRA Leukotriene Receptor Antagonists

LW Late-Onset Wheezers

MDC..... Myeloid Dendritic Cell

Mig/CXCL9 Interferon - Induced Angiostatic CXC

Chemokines, Monokine Induced by Interferon

MS Multiple Sclerosis

NK...... Natural Killer

nTregs Natural T Regulatory Cell

NW Never Wheezed

OA......Osteoarthritis

OD Optical Density

PDAC Pancreatic Ductal Adenocarcinoma

pDC......Plasmacytoid Dendritic Cell

PIAMA..... Prevention and Incidence of Asthma and Mite

Allergy

PSCs Pancreatic Stellate Cells

PSRW...... Preschool Recurrent Wheeze

PW Persistent Wheezers

QF......QuantiFERON-TB

R..... Spearmnan rank correlation

RA..... Rheumatoid arthritis

RSV..... Respiratory Syncytial Virus

RV.....Rhinovirus

SABA Short-Acting Beta2-Agonists

SARS Severe Acute Respiratory Syndrome

SF Synovial Fluid

SIDRIA...... Italian Studies of Respiratory Disorders in Childhood

and the Environment

SLE......Systemic Lupus Erythromatosis

SPT Skin Prick Testing

SS Sjögren Syndrome

SSc Systemic Scleroderma

ST Synovial Tissue

Tc T Cytotoxic

TCRS Tucson Children's Respiratory Study

TEW..... Transient Early Wheezers

TH1 T Helper1

TLR..... Toll-Like Receptor

TNF-a..... Tumour Necrosis Factor-a

Tregs T Regulatory Cell

TSLP..... Thymic Stromal lymphopoietin

URIs..... Upper Respiratory Infections

VEGF Vascular endothelial growth factor

WBC..... White Blood Cells

x2 Kruskal-Wallis Test

List of Tables

Table No.	Title	Page
Table (1):	Differential diagnosis of wheezing illness in pre-school children	21
Table (2):	Clinical and epidemiological data of group A patients	47
Table (3):	Blood picture counts and serum IP- 10 levels in group A patients	49
Table (4):	SPT results among group A patients	50
Table (5):	Serum IP-10 levels among enrolled subjects	51
Table (6):	Correlation between serum IP-10 level and studied parameters in group A patients	52
Table (7):	Variations of clinical data and CRP in patients according to their age	53
Table (8):	Variations of SPT in patients according to their age	54
Table (9):	Variations of serum IP-10 levels in group A patients according to age	55
Table (10):	Variations of serum IP-10 levels in group A patients with different clinical parameters	56
Table (11):	Area under the curve for predictive performance of IP-10 level for hospital admission among infants with wheezy chest	57

List of Tables

Table No.	Title	Page
Table (12):	Variation of serum IP-10 levels	
	among enrolled infants with	
	respiratory infections according to	
	the presence of wheezes	58

List of Figures

Figure N	o. Title	Page
Fig. (1):	The wheezing phenotypes	10
Fig. (2):	Human respiratory pathogens associated with asthma exacerbations.	14
Fig. (3):	Modified Asthma Predictive Index (API).	17
Fig. (4):	The challenge of managing wheezing in infants	_
Fig. (5):	Sequential events involving Type I and Type II interferon induction of the CXCR3 ligands, CXCL9 and CXCL10, and their respective roles in the recruitment of effector T cell and NK cell populations into inflamed tissues	24
Fig. (6):	CXCL10 secretion in an amplification feedback loop	25
Fig. (7):	Mechanisms involved in rhinovirus (RV)-induced asthma exacerbations	32
Fig. (8):	Serum IP-10 levels among enrolled subjects	52
Fig. (9):	IP-10 serum levels among enrolled patients with wheezy chest according to requirement for hospital admission	

Fig. (10):	Sensitivity and specificity profile of
	serum IP-10 level for hospital
	admission among infants with
	wheezy chest58

Introduction

Wheezing is common throughout infancy and childhood except in the neonatal period when it is relatively rare. About 19% of 10-year-old children experience wheezing with an average age of onset of 3 years (*Kurukulaaratchy et al.*, 2002). Bronchiolitis and preschool recurrent wheeze (PSRW) are common pediatric problems causing significant morbidity and mortality in the first years of life. Infants and toddlers with atopy and recurrent wheeze early in life are at greater risk for childhood asthma than non-atopic subjects who wheeze (*Oddy et al.*, 2002).

Chemokines are small chemotactic cytokines that modulate inflammatory processes and regulate migration of leucocytes and cell-cell signalling in the immune system. Interferon-y inducible protein of 10 kilodaltons (IP-10), or CXC ligand 10 (CXCL-10), is one of the chemokine (C-X-C motif) receptor 3 (CXCR3) binding chemokines that exerts a stimulating effect on the directional migration of activated and memory Th1 cells and promotes the production of Th1 cytokines (*Romagnani*, 2006).

Serum IP-10 levels were clearly different in subjects with acute virus-induced asthma compared with those with non-virus-induced asthma and serum IP-10 at presentation

of subjects with acute asthma was strongly associated with more severe airflow obstruction and a reduced b2-agonist bronchodilator response during their initial emergency department presentation (*Peter et al.*, 2007).

Aim of the Work:

We sought to investigate serum levels of IP-10 among infants presenting with wheezy chest to anticipate its role in infant wheezes, relation to severity of wheezing illness, presence of signs of respiratory infection or evidence of atopy.

Infant Wheezing

Wheezing is a common clinical finding in children, especially in the first years of life. Epidemiological studies have shown a high prevalence of wheezing in this age group. Studies in developed countries have shown prevalence between 20% and 30%, with high recurrence of episodes. In developing countries, prevalence rates appear to be higher (*Ferreira and Wandalsen*, 2014).

Wheezing in infants accounts for a high demand of medical consultations and emergency care services, with relatively high rates of hospitalization. Along with acute respiratory infections, it plays an important role in infant mortality (*De Jong et al.*, 2007)

Definition of infant wheeze:-

Wheeze can be defined as a musical sound, highpitched and continuous, emitting from the chest during breath exhalation resulting, irrespective of the underlying mechanism, from narrowing of intrathoracic airway and expiratory flow limitation. Although this definition is well known, it may be poorly understood and defined by parents and, therefore, if based only on parental report children may be considered as experiencing wheeze when they, actually, do not. It is important that a health professional values the wheeze to confirm or reject the diagnosis, always considering that even not all physicians are equally precise in valuing the severity of wheeze (*Brand et al.*, 2008).

Prevalence of infant wheeze:-

Wheezing is common throughout infancy and childhood except in the neonatal period when it is relatively rare. About 19% of 10 years old children experience wheezing with an average age of onset of 3 years (Kurukulaaratchy et al., 2003). In addition, several population-based birth cohort studies documented that 30% of children suffer from wheezing during respiratory infections before their third birthday. Incidence peaks in those aged 2-8 months. Annual incidence is 11.4% in infants younger than 1 year and 6% in those aged 1-2 years. The illness accounts for 4500 deaths and 90,000 hospital admissions per year. Prevalence may be higher in urban areas (Willwerth et al., 2006). Recurrent wheezing is common, but most patients outgrow their symptoms by school age. Infant wheezing is sometimes mixed with other causes of noisy breathing including all causes of nasal obstruction in the first 2 years of life. Adenoid hypertrophy is commonly misdiagnosed as bronchospasm on chest auscultation (Piippo-Savolainen and Korppi, 2008).