Debulking surgery and Radiotherapy versus Biopsy and Radiotherapy in patients with High Grade Gliomas.

A systematic review.

A research submitted for partial fulfillment of the conditions for the Master Degree in Neurosurgery.

By

Ahmed Ragab Abdel Salam M.B.B.Ch; Faculty of medicine, Mansoura University

Supervised by

Prof.Dr.Salah Abd Al-Khalek Hemida

Professor of Neurosurgery, Faculty of medicine, Ain Shams University.

Asst.Prof.Dr.Hesham Anwar Abdel Rahiem

Assistant Professor of Neurosurgery, Faculty of medicine, Ain Shams University.

Lecturer.Dr.Ahmed Roshdy Farghaly

Lecturer of Neurosurgery, Faculty of medicine, Ain Shams University.

Faculty of Medicine
AIN SHAMS UNIVERSITY
2017

ACKNOWLEDGEMENT

First of all, thanks to **ALLAH** who gave me the power to accomplish this work. I would like to express my sincere gratitude to my advisor **Prof.Dr.Salah Abd Al-Khalek Hemida**, for his continuous support, patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing of this review

Beside my advisor, I would like to thank **Asst.Prof.Dr.Hesham Anwar**, and **Dr.Ahmed Roshdy**, not only for their insightful comments and encouragement, but also for the hard questions which pushed me to widen my research from various perspectives.

My sincere thanks also go to **Prof.Dr.Mohamed Tawfik Hosny**, the chairman of neurosurgery department, Maadi Military Medical Complex for for his kind help, valuable guidance, assistance and encouragement.

No words can describe my intense gratitude to **Prof.Dr.Emad Khattab**, for his unconditional support, continuous motivation, absolute patience and valuable life experience he shared with me. He always pushes me forward and stands by my side in all my work problems and life issues.

For *all the Neurosurgery staff members,* Maadi Military Medical Complex, thank you for teaching me how to be a neurosurgeon. I will not forget the time spent serving and learning in this departement and I will be grateful for it all my life time.

My deep gratitude also goes **to Asst.Prof.Dr.Sherif Matbouly**, and **Dr.Mohamed A. Bashir**, for their immense effort, valuable technical notes, unlimited support and help to complete this review.

To **my fellow neurosurgery residents,** I stand speechless in front of you. For all the time we spent together, for all the memories we had, for all the experience we shared, I would like to say THANK YOU.

Finally, to my lovely wife, **Dr. Mayada Mohamed**, thank you for the sleepless nights we were working together before deadlines, and for all the fun and pain we have had.

Table of Contents

1	INTRODUCTION	10
2	AIM OF THE WORK	12
	LETERATURE REVIEW	13
	Epidemiology	13
	Aetiological factors	13
	Epidemiology of anaplastic astrocytomas and glioblastomas	14
	Epidemiology of oligodendrogliomas	14
	Epidemiology of ependymomas	14
	Pathology	15
	Histological Classification and Grading	15
	Pathological features	16
	Pathologic changes produced by expanding intracranial lesions	16
	Types of high-grade gliomas	17
	Anaplastic astrocytoma (AA) (WHO Grade III):	17
	Glioblastoma multiforme (GBM) (WHO Grade IV):	18
	Gliosarcomas (WHO grade IV):	21
	Gliomatosis cerebri (GC) (WHO grade III):	21
	Anaplastic oligodendroglial tumors and mixed gliomas:	22
	Anaplastic ependymomas (WHO Grade III):	24
	Clinical Picture	26
	History	26
	Course and Duration of Symptoms and Signs	29
	Assessment scale for clinical picture	31
	Effect of location of brain tumors on clinical manifestations	33
	Investigations	31
	Anaplastic astrocytomas (AAs)	31
	Glioblastoma multiforme	33
	Gliosarcomas	43
	Gliomatosis cerebri (GC)	44
	Anaplastic oligodendrogliomas	46
	Anaplastic oligoastrocytomas	48
	Anaplastic Ependymomas	50
	<i>Treatment</i> General medical management	53 53
	Surgical interference	
	Biopsy	54 54
	Tumour resection (Cytoreductive surgery)	54 56
	Radiation therapy (RT)	62
	Chemotherapy	66
		00

	Treatment of anaplastic astrocytoma and glioblastoma multiforme.	70
	Treatment of anaplastic oligodendroglioma and oligoastrocytoma.	70
	Treatment of anaplastic ependymomas.	71
	Treatment of recurrent malignant gliomas.	71
	Future Therapeutic Development.	72
	Gene therapy.	72
	Oncolytic viruses.	73
	Immunotherapy.	7 3
	Follow up after treatment.	74
4	SYSTEMATIC REVIEW.	79
	Search strategy.	79
	Data collection.	81
	Data analysis.	82
5	DISCUSSION	99
6	SUMMARY.	105
7	RECOMMENDATIONS.	107
8	REFERENCES.	108
q	ARARIC SAMARRY	117

LIST OF FIGURES

No.	Title	Page
Figure 1	Anaplastic astrocytoma (Gross section)	17
Figure 2	Anaplastic astrocytoma (microscopic picture)	17
Figure 3	Glioblastoma (Gross section)	18
Figure 4	Glioblastoma (Microscopic picture) 1	19
Figure 5	Glioblastoma (Microscopic picture) 2	19
Figure 6	Glioblastoma (Microscopic picture) 3	19
Figure 7	Oligodendroglioma (Gross section)	21
Figure 8	Anaplastic oligodendroglioma (Microscopic picture)	22
Figure 9	Anaplastic oligoastorcytoma (Microscopic picture)	23
Figure 10	Ependymoma (Gross section)	24
Figure 11	Ependymoma (Microscopic picture)	25
Figure 12	Clinical signs of the brain tumors in relation to their location.	30
Figure 13	Anaplastic astorcytoma (Postcontrast CT)	31
Figure 14	Anaplastic astrocytoma MRI T1	32
Figure 15	Anaplastic astrocytoma(a) axial PDW1considerable mass effect and edema (b) axial post-contrast T1WI	32
Figure 16	Anaplastic astrocytoma. (a) Axial T1WI and (b) On T2WI. (c) On post-contrast axial T1WI	33
Figure 17	Glioblastoma (a) Unenhanced CT (b) Postenhanced CT	34
Figure 18	Glioblastoma (a) Axial T1WI (b) On axial T2WI (c) Axial postcontrast T1WI	34
Figure 19	High-grade glioma (GBM). Postcontrast T1WI (a) with increased diffusion (b) and low corresponding ADC	35
Figure 20	High-grade glioma (GBM). (c). The fractional anisotropy color coded map (d) shows reduction of the FA values (arrow)	36
Figure 21	High-grade glioma (GBM). (e) demonstrates displacement and destruction of the white matter tracts	36
Figure 22	High-grade glioma (GBM). Perfusion color coded map (f) demonstrates increased rCBV	37
Figure 23	Glioblastoma. (a) Axial postcontrast T1-weighted image (b) On the perfusion MR image	38
Figure 24	Glioblaastoma.(Long TE (135 ms) spectroscopy	39
Figure 25	Brain metastasis. Axial postcontrast T1-weighted (a), T2-weighted (b) images, and (c) decreased perfusion due to capillaries compression by vasogenic edema	40

Figure 26	Brain metastasis. On MRS; Long TR (135 ms) spectrum	40
	Brain abscess. (a) Postcontrast T1-weighted image (b) On T2-	
Figure 27	weighted image (c) On diffusion-weighted image	41
	(d) Long TR spectrum	
	Primary cerebral non-Hodgkin B-cell lymphoma. (a) Axial T2-	
Figure 28	weighted image (a). On postcontrast T1-weighted image (b). On	42
1.86 5 = 5	diffusion-weighted image (c), while on ADC map (d), and on the	
	fractional anisotropy color coded map (e)	
Figure 29	Perfusion color map and time-intensity curve (f)	42
Figure 30	Long TE spectra (g)	42
Figure 31	Paraventricular tumor-like MS lesions in a 30-year-old patient. (a)	42
riguic 31	Axial T2WI (b) On perfusion color coded map image	
Figure 32	Single-voxel MR proton spectrum of MS	43
Figure 33	Gliosarcoma. (a) Axial T1WI (b) On axial T2WI (c) On axial post-	43
i iguite 33	contrast T1WI	
Figure 34	Gliomatosiscerebri in a 50-year-old patient. (a) Postcontrast CT	44
Figure 35	Gliomatosiscerebri. (a) Axial T2-weighted image (b) Postcontrast	44
rigule 33	T1-weighted image	77
Figure 36	Gliomatosiscerebri (c) Perfusion and time-intensity curve image	45
Figure 37	Gliomatosiscerebri(d) The spectroscopic color map	45
Figure 20	Anaplastic oligodendrogliomaContrast-enhanced computed	16
Figure 38	tomography	46
	Axial MR images of a cystic tumor, found to be an anaplastic	
Figure 39	oligodendroglioma. A: Unenhanced T1-weighted (spin echo)	47
	image, B: T2 –weighted (fast recovery fast spin echo)	
Figure 40	Anaplastic oligodendroglioma C: Gadolinium-enhanced T1-	47
rigule 40	weighted image	
Figure 41	Anaplastic oligodendroglioma:Spectroscopy (long echo time).	48
Figure 42	Anaplastic oligodendroglioma:Perfusion-weighted imaging	48
Figure 43	Anaplastic oligodendroglioma:ADC map	49
Figure 44	Anaplastic oligoastrocytoma: Unenhanced axial CT scan	50
	Anaplastic oligoastrocytoma: Axial T1-weighted MR images	
Figure 45	without (a) and with (b) contrast material (3) Axial T2-weighted MR	51
J	image	
	Supratentorialependymoma in a 10-year-old girl on anoncontrast	
Figure 46	CT, b T2-weighted, c FLAIR, and d-f postgadolinium T1-weighted	<i>52</i>
= 	MRI	
	Supratentorial anaplastic ependymoma on apostgadolinium T1; b	
Figure 47	FLAIR (inset: noncontrast CT); c diffusion- weighted images (DWI);	53
Figure 47	d apparent diffusion coefficient; and e perfusion MRI with f	33
	cerebral blood volume measurements	
Figure 48	Supratentorialanaplasticependymoma in a 12-year-old girl. a Axial	53
i igui e 40	FLAIR, b axial perfusion MRI, cpostcontrast axial T1, d axial cerebral	<i></i>

	blood volume map derived from perfusion MRI, e axial ADC	
	coefficient, and f perfusion MRI T2*-weighted dynamic	
	susceptibility	
Figure 49	Craniotomy	58
	An intra-operative image of a resection of a glioblastoma under	
Figure 50	white light (upper panel) and blue light (bottom panel) after	59
	administration of 5-ALA	
Figure 51	Intraoperative photography demonstrating Gliasite balloon within	64
Tigule 31	the resection cavity	
Figure 52	An example of radiotherapy treatment volumes	65
	Before starting the adjuvant phase the tumour appears to be large	
Figure 53	in size. Adjuvant Temozolomide shows excellent response after	66
	two more cycles	
Figure 54	Intraoperative view of a recurrent GBM resection cavity lined with	69
rigure 54	biodegradable BCNU wafers	
	Contrast-enhanced MR SE T1-weighted sequences show the	
Figure 55	postsurgical appearance of a large cystic-like lesion 1 month after	<i>76</i>
	surgery	
Figure 56	Contrast-enhanced MR SE T1-weighted sequence 3 months after	<i>77</i>
rigare 30	surgery and during chemo and radiotherapy	
Figure 57	Contrast-enhanced MR SE T1-sequence 12 months after treatment	77
Figure 58	A schematic showing the article selection process from Medline	80
	database search and manual review of bibliographies.	
Figure 59	Mean age in all the studies except Mukherjee et al. 2014 which	86
	was not reported.	
Figure 60	Incidence of symptoms and signs among review population.	88
Figure 61	Incidence of tumour location among review population.	91
Figure 62	Percentage of types of intervention among review population.	93
Figure 63	Adjuvant therapy options among review population.	94
Figure 64	Mean overall survival following operative procedures among	05
	review population.	95
Figure 65	Mean pre-operative Karnofsky performance status among review	101
	population.	101
Figure 66	Mean post-operative Karnofsky performance status among review	103
	population.	
Figure 67:	Post-operative complications percentage among review	103
Figure 67:	population.	103

List of Tables

Table No.	
Table 1: WHO classification of tumors of the nervous system (gliomas including astrocytomas, oligodendrogliomas, and ependymomas).	15
Table 2: Key characteristics of IDH-wildtype and IDH-mutant glioblastomas.	20
Table 3: Karnofsky performance score.	29
Table 4: Neurological performance scale (NPS).	29
Table 5: Postoperative complications.	60
Table 6: Studies characteristics.	83
Table 7: Population description.	84
Table 8: Prevalence of symptoms and signs preoperative.	86
Table 9: Pathology among study population.	88
Table 10: Tumour location and type of intervention.	89
Table 11: Types of surgical intervention and adjuvant therapy for HGGs.	91
Table 12: Overall Survival according to Intervention.	93
Table 13: Mean functional recovery.	95
Table 14: Post-operative complications.	97

List of Abbreviations:

HGG	High grade gliomas
GBM	Glioblastoma Multiforme
СТ	Computed Tomography
MRI	Magnetic Resonance Imaging
MDT	multi-disciplinary team
NPS	neurological performance scale
CSF	
	Cerebrospinal fluid
ICA	Internal carotid artery
PCom A	Posterior communicating artery
ACh A	Anterior choroidal artery
PCA	Posterior cerebral artery
GST	Glutathione-S-transferase
DNA	deoxy nucleic acid
RNA	ribonucleic acid
EMF	electro-magnetitc field
AIDS	acquired immune deficiency syndrome
VEGF	vascular epithelial growth factor
AA	anaplastic astrocytomas
WHO	World Health Organization
EGFR	epidermal growth factor receptor
GC	Gliomatosis cerebri
ICP	Increased intracranial pressure
PNET	supratentorial primitive neuroectodermal tumor
DMI	diffusion-weighted imaging
DTI	diffusion tensor imaging
PWI	perfusion-weighted imaging
CBV	Cerebral blood volume
MS	multiple sclerosis
MRS	Magnetic resonance spectroscopy

1. INTRODUCTION

Gliomas are primary brain tumors that develop from glial cells. Glial cells provide the structural backbone of the brain and support the function of the neurons. Gliomas make up about 30% of all brain and central nervous system tumors and 80% of all malignant brain tumors (Goodenberger ML et al., 2012).

The exact causes of gliomas are not known. Different oncogenes can cooperate in the development of gliomas (Reuss, D et al., 2010).

Gliomas are classified by pathologists according to their appearance under the microscope into four grades (I, II, III and IV), and the treatment and prognosis depend upon the tumor grade (Louis DN et al., 2014).

High grad gliomas, which include anaplastic astrocytoma (WHO grade III), glioblastoma multiforme (GBM, WHO grade IV), and gliosarcoma, are the most common malignant primary central nervous system (CNS) tumors in adults (Bondy ML et al., 2011).

HGG may arise through two distinct pathways of neoplastic progression. Tumors that progress from lower grade astrocytic tumors, typically display both well-differentiated and poorly differentiated foci. They develop in younger patients (fifth to sixth decade), with time to progression from lower-grade lesions ranging from months to decades. In contrast, Another pathway develop in older individuals (sixth to seventh decade), have short clinical histories (less than 3 months), and arise de novo without any evidence of a lower-grade precursor (Ohgaki H et al., 2011).

The symptoms of HGG depend mainly on its location and its size and consequently on the function of areas involved by the tumor, with a variety of nonspecific symptoms typical of a mass growing inside the skull with increased intracranial pressure. Common symptoms are persistent headache, nausea, vomiting, focal deficit (hemiparesis, hemianesthesia,

hemianopsia, diplopia, aphasia) and seizures due to tumor irritation effect (Bleeker et al., 2012).

High-grade glioma diagnosed mainly as an irregular hypointense lesion on T1-weighted MRI with various degrees of contrast enhancement and edema. The presence of ring-like enhancement surrounding irregularly shaped areas of presumed necrosis suggests glioblastoma. Magnetic resonance spectroscopy may be used to help differentiate tumors from stroke, old trauma, radionecrosis, infection, and multiple sclerosis (Talos IF et al., 2013).

Management includes either biopsy or surgical resection followed by radiotherapy in the majority of cases. Additional adjuvant chemotherapy is also a treatment consideration. In general, high-grade gliomas have a poor prognosis, are rapidly progressive, and are resistant to therapy. Median survival is around 1 year for GBM, 2 years for anaplastic astrocytoma, and 5 years for anaplastic oligodendroglioma (Bleeker et al., 2012).

2. AIM OF WORK

The aim of this study is to evaluate the role of biopsy versus cytoreductive surgery for the management of patients radiologically diagnosed with high grade gliomas regarding the clinical outcome and survival. Prognostic factors such as age of patients, duration of symptoms, presence of seizures, neurological performance scale (NPS), as well as tumor characteristics such as localization, size, and grading will be put in consideration.

3. LITERATURE REVIEW

Epidemiology

Malignant gliomas are the most common primary central nervous system tumors in adults and are subdivided into anaplastic gliomas (anaplastic astrocytoma, anaplastic oligodendroglioma, and anaplastic oligoastrocytoma) and glioblastoma which represents the most aggressive and prevalent subtype (Jeyapalan et al, 2013). Their epidemiology has focused on identifying the factors that can be modified to prevent this disease (Judith et al, 2016).

Aetiological factors

(A)Genetic Factors: Diseases or syndromes that are associated with rare mutations in highly penetrant genes like neurofibromatosis types 1&2, tuberous sclerosis are known to increase risk of glioma (Fisher et al, 2011).

Cytogenetic studies have shown that the loss of chromosome 10 in the astrocytomas is associated with increasing grade of malignancy (Lim& Harsh, 2005). Also allelic deletion of chromosome 17 occurs in astrocytomas of all grades of malignancy, but not in gliomas such as oligodendroglioma and ependymoma (He et al, 2001).

DNA stability and repair, and cell cycle regulation have produced some persuasive results with respect to risk for cancer; there is association of glutathione-S-transferase (GST) T1 deletion and glioma with p53 mutations (Wrensch et al, 2014).

- (B) Virus induced-gliomas: Viruses known to induce tumors are classified as either deoxy nucleic acid (DNA) as papoviruses and adenoviruses or ribonucleic acid (RNA) viruses as retroviruses subfamily of oncoviruses (Meyer MA, 2008).
- (C) Radiation-induced brain tumors: radiation types are possible mutagens; survivors from atomic bomb explosion have higher incidence rates of gliomas and other tumors (Fisher et al, 2011).
- **D)** Chemical-induced brain tumors: Chemical mutagens include both endogenous and exogenous agents, which may react directly with DNA or exert their effect through a metabolite. These agents cause structural DNA damage by altering DNA bases (Fisher et al, 2011).

Epidemiology of anaplastic astrocytomas and glioblastomas

Malignant astrocytomas comprise more than 50% of astrocytic tumors which are more than 70% of gliomas. Glioblastoma comprises 80% of malignant gliomas. These highly invasive tumors have a strong predilection for cerebral hemispheres (Larkavelas&Tascos, 2011).

Malignant astrocytomas are associated with slight male to female preference (1.6:1.0). The peak age at onset for GBM is in the sixth or seventh decade, whereas anaplastic astrocytomas (AA) usually presents in the fourth or fifth decade. GBM rarely occurs in children less than 14 years of age. Malignant astrocytoma is not believed to be a familial disease (Weingart et al, 2006).

Epidemiology of oligodendrogliomas

Approximately 5% of all primary brain tumors are oligodendroglial tumors. They represent up to 4-8% of cerebral glial Tumors. The median age at diagnosis is 40-50 years old. It is primarily a tumor of adult, but with smaller earlier peak in childhood between 6-12 years. Ratio of male to female is 3:2. CSF metastases occur in up to 10%. Spinal oligodendrogliomas comprise only 2.6% of intra-medullary tumors of the cord and filum (Weller M, 2012).

Epidemiology of ependymomas

Ependymomas arise from ependymal cell lining of the cerebral ventricles and the central canal of the spinal cord. They may occur else anywhere along the neuroaxis. Intracranial ependymomas comprise only 5-6% of intracranial gliomas, 69% occur in children. Spinal ependymomas represent 60% of spinal cord gliomas, 96% occur in adults. In pediatrics they are most common in the posterior fossa (**Greenberg M**, **2016**).

In adults, they tend to occur intraspinal and less frequently supratentorial (intraventricular or periventricular) and with tendency to occur ectopically intraparenchymal, somewhere in the hemispheres (Westphall M, 2013).

They have the potential to spread via CSF through the neuroaxis, a process known as seeding or drop mets in 11%. The incidence is higher with high grade. Systemic spread occurs on rare occasion (**Greenberg M, 2016**).

PATHOLOGY

Gliomas constitute the most common type of primary brain tumor. They are derived from glial cells of astrocytic, oligodendroglial and ependymal origin. According to histologic type, the most frequently reported neoplasms are the astrocytic tumors, which account for approximately 70% of the cases reported (**Drevelegas&Karkavelas, 2011**).

Histological Classification and Grading

The current World Health Organization Classification of Tumors of Central Nervous System, Fifth edition (2016 WHO) lists more than 120 types of brain tumors. Current advances in molecular methodologies, particularly in the field of genomics, transcriptonomics, and proteomics, have revolutionized brain tumors classification, although the present classification which remains based on morphology and histology is increasingly being complemented by genetic characterization of neoplasms (**Louis DN et al, 2016**).

WHO classification of tumors of the nervous system (gliomas including astrocytomas, oligodendrogliomas, and ependymomas) (Louis DN et al, 2016) (Table 1):

WHO grades of select CNS tumours	
Diffuse astrocytic and oligodendroglial tumours	
Diffuse astrocytoma, IDH-mutant	.!!
Anaplastic astrocytoma, IDH-mutant	III
Glioblastoma, IDH-wildtype	IV
Glioblastoma, IDH-mutant	IV
Diffuse midline glioma, H3 K27M-mutant	IV
Oligodendroglioma, IDH-mutant and 1p/19q-codeleted Anaplastic oligodendroglioma, IDH-mutant and	11
1p/19q-codeleted	III
Other astrocytic tumours Pilocytic astrocytoma Subependymal giant cell astrocytoma Pleomorphic xanthoastrocytoma Anaplastic pleomorphic xanthoastrocytoma	
Ependymal tumours	
Subependymoma	
Myxopapillary ependymoma	
Ependymoma	II
Ependymoma, RELA fusion-positive	II or III
Anaplastic ependymoma	III
Other gliomas	
Angiocentric glioma	
Chordoid glioma of third ventricle	II