EFFECT OF CISPLATIN AND CURCUMIN THERAPY ON GROWTH RATE OF HEAD AND NECK SQUAMOUS CELL CARCINOMA CELL LINE: AN INVITRO STUDY

Thesis Submitted to the Faculty of Dentistry Ain Shams
University in Partial Fulfillment of the Requirements for
the Master Degree in Oral Pathology

BY

SEHAM AHMED ABD-ELGHANI ELMOAFY
(BDS)

2002

Faculty of Dentistry
Ain Shams University
2009

Supervisors

DR. ADEL MOHAMED ABDEL-AZIM

Professor and head of Oral Pathology Department

Faculty of Dentistry

Ain Shams University

DR. IMAN MOHAMED HELMY

Assistant Professor of Oral Pathology

Faculty of Dentistry

Ain Shams University

Acknowledgement

I would like to express my deep thanks to **ALLAH**, **the Most Grateful**, for guiding me through this work and enabling me to accomplish it.

I must extend my deepest appreciation to **DR. ADEL MOHAMED ABDEL AZIM**, Professor and Head of the Oral Pathology
Department, Faculty of Dentistry, Ain Shams University, for offering
his knowledge and co-operation whenever needed.

Grateful thanks for **DR. ALY FAHMY MOHAMED** General Manager of Applied Research Sector, Vacsera-Egypt, for his kind support and cooperation.

I would like to thank **DR. IMAN MOHAMED HELMY**, Associate Professor of Oral Pathology, Faculty of Dentistry, Ain Shams University, for her cooperation and advice whenever needed. Thank you for being always present in every step of my work.

Very special thanks to **DR.MOHAMED SALAH EL-DIN AYOUB**, Professor of Oral Pathology and Vice-Dean of the Faculty of Dentistry, Ain Shams University and all the Oral Pathology staff members for their constant encouragement, support and kindness.

التأثيرالعلاجي لمادتي السيسبلاتين والكركمين علي معدل نمو خط خلايا سرطان الخلايا الحرشفية للرأس والرقبة تجربة معملية

رسالة مقدمة كجزء من مقومات الحصول على درجة الماجستير في أمراض الفم

مقدمة من الطبيبة / سهام أحمد عبد الغني بكالوريوس طب الأسنان 2002

كلية طب الأسنان جامعة عين شمس

2009

المشرفون

ا.د. / عادل محمد عبد العظيم

أستاذ ورئيس قسم باثولوجيا الفم كلية طب الأسنان جامعة عين شمس

ا.م.د. / إيمان محمد حلمي

أستاذ مساعد بقسم باثولوجيا الفم كلية طب الأسنان جامعة عين شمس

(قالوا سبحانك لا علم لنا إلا ما علمتنا إنك أنت العليم الحكيم)

صدق الله العظيم

Table of Contents

List of Graphs and Tables	ii
List of Figures	iii
List of Abbreviations	V
Introduction	1
Review of Literature	3
Aim of the study	29
Materials and Methods	30
- Cell line	30
- Reagents used	30
- Drugs used	30
- Cell culture Medium	31
- Cell Culture Techniques	32
- Cellular Viability Assay	34
- Histological Examination	35
- Statistical Assessment	37
Results	38
- Histopathological Examination and Image Analysis Results	38
- Viability Assay Results	39
- Statistical analysis Results	39
- Correlation between surface area, perimeter, and circulatory	40
Discussion	57
Conclusions	63
Recommendations	64
Summary	65
References	67
الملخص باللغة العريبة	

List of Graphs and Tables

Graph 1: Evaluation of cisplatin cytotoxicity on Hep-2cell line us exclusion assay	sing Dye 41
Graph 2: Evaluation of curcumin cytotoxicity on Hep-2cell line us exclusion assay	sing Dye 41
Graph 3: Evaluation of cytotoxicity of cisplatin and curcumin of cell line using Dye exclusion assay	n Hep-2 42
Table 1 : Descriptive statistics for surface area, perimeter, and circof Hep2 cells treated with different drugs	rcularity 43
Table 2 : ANOVA Test showing surface area, perimeter, and circul Hep-2 cell treated with different drugs	latory of 44
Table3: Tukey Test For the Surface Area	44
Table 4: Tukey Test For the Perimeter	45
Table 5: Tukey Test For the circularity	45

List of Figures

Fig.1: pearson correlation between surface area and perimeter	46
Fig.2: pearson correlation between surface area and circulatory	46
Fig.3: pearson correlation between perimeter and circulatory	47
Fig.4 : Error bar showing the mean and the standard errors of perimeter in the different cytotoxic drug.	47
Fig.5 : Error bar showing the mean and the standard errors of surface area in the different cytotoxic drugs.	48
Fig.6 : Error bar showing the mean and the standard errors of circularity in the different cytotoxic drugs.	48
Fig.7: A photomicrograph stained with H\E showing control Hep-2 cells (1000xoil immersion)	49
Fig.8: A photomicrograph stained with H\E showing membrane blebbing (A), fragmentation of the nucleus (B) and apoptotic bodies (C) in the Hep-2 cells treated with 2.5 μM Curcumin (1000xoil immersion)	49
Fig.9: A photomicrograph stained with H\E showing membrane blebbing (A), fragmentation of the nucleus (B) and apoptotic bodies (C) in the Hep-2 cells treated with 2.5 μ M Curcumin (1000xoil immersion)	50
Fig.10: A photomicrograph stained with H\E showing nuclear condensation (A) and apoptotic bodies (B) in the Hep-2 cells treated with $10 \mu\text{M}$ Curcumin (1000xoil immersion)	50
Fig.11: A photomicrograph stained with H\E showing membrane blebbing (A), nuclear condensation (B), and apoptotic bodies (C) in the Hep-2 cells treated with 5 μ M Curcumin (1000xoil immersion)	51
Fig.12: A photomicrograph stained with Giemsa showing fragmentation of the nucleus (A) in the Hep-2 cells treated with 2.5 µM Curcumin (1000xoil immersion)	51

Fig.13: A photomicrograph stained with H\E showing fragmentation of the nucleus (A) and apoptotic bodies (B) in the Hep-2 cells treated with 2.5 μgm Cisplatin (1000xoil immersion)	52
Fig.14: A photomicrograph stained with H\E showing apoptotic bodies (A) in the Hep-2 cells treated with 5 μgm Cisplatin (1000xoil immersion)	52
Fig.15: A photomicrograph stained with H\E showing nuclear condensation (A) and membrane blebbing (B) in the Hep-2 cells treated with 10 μgm Cisplatin (1000xoil immersion)	53
Fig.16: A photomicrograph stained with H\E showing nuclear condensation (A) and membrane blebbing (B) in the Hep-2 cells treated with 5μgm Cisplatin (1000xoil immersion)	53
Fig.17: A photomicrograph stained with Giemsa showing nuclear condensation (A) in the Hep-2 cells treated with 10 μgm Cisplatin (1000xoil immersion)	54
Fig.18: A photomicrograph stained with Giemsa showing fragmentation of the nucleus (A) in the Hep-2 cells treated with 2.5 µgm Cisplatin (1000xoil immersion)	54
Fig.19: A photomicrograph stained with H\E showing membrane blebbing (A) and fragmentation of the nucleus (B) in the Hep-2 cells treated with 2.5 μ M\ μ gm Combination (1000xoil immersion)	55
Fig.20: A photomicrograph stained with H\E showing membrane blebbing (A) and apoptotic bodies (B) in the Hep-2 cells treated with 5 μ M\ μ gm Combination (1000xoil immersion)	55
Fig.21: A photomicrograph stained with H\E showing membrane blebbing (A) and apoptotic bodies (B) in the Hep-2 cells treated with 5 μ M\ μ gm Combination (1000xoil immersion)	56
Fig.22: A photomicrograph stained with Giemsa showing nuclear condensation (A) and membrane blebbing (B) in the Hep-2 cells treated with 2.5 μM\μgm Combination (1000xoil immersion)	56

List of Abbreviations

ATCC: American type culture collection

BDNF: Brain-derived neurotrophic factor

CDDP: Cis-diammine dichloride platinum

COX-2: Cyclooxygenase-2

CBP: CREB- binding protein

CMN: Curcumin

DRG: dorsal root ganglia

DMSO: Di-methyl sulfoxide

EBV: epstein barr virus

E.Coli: escherichia coli

EC: endothelial cell

ELISA: Enzyme linked immunosorbant assay

FBS: foetal bovine serum

FA: fanconi anemia

G2 phase: gap 2 phase of cell cycle

HSV-1: herpes simplex virus-1

HSV-2: herpes simplex virus-2

HIV: human immunodifficiency virus

HPV: human papilloma virus

HNSCC: head and neck squamous cell carcinoma

Hep-2: human epidermoid carcinoma

iNOS: inducible nitric oxide synthase

JNK: jun N-terminal kinase

LDPI: laser Doppler perfusion imaging

LOX: Lipooxygenase

M phase: mitosis phase of cell cycle

MDR Lines: multidrug- resistant lines

MEM-H: minimum essential medium modified with hank salt

NSAIDS: non steroidal anti-inflammatory drugs

NF-κB: nuclear factor kappa B

OS: OsteosarcomaOPN: osteopontinPG: prostaglandin

PBS: phosphate buffer saline

PDGF: Platelet-derived growth factor

RTOG: Radiation therapy oncology group

Rb: retinoblastoma gene

ROS: reactive oxygen species

VSMF: Vascular smooth muscle cell

VEGF: vascular endothelial growth factor

VC: Vitamin c

Introduction

Squamous cell carcinoma represents more than 90% of all head and neck cancers, squamous cell carcinoma has a regional distribution involved in the biological activity of the neoplasm. Behavior of squamous cell cancer depends on its site of origin. Each anatomic site has its own particular spread pattern and prognosis. In the United States, squamous cell carcinoma of the head and neck comprises about 4% of all malignancies. This corresponds to an estimated 17 per 100,000 persons with newly diagnosed squamous cell carcinoma of the head and neck per year. Male-to-female incidence rates are greater than 3:1. The discrepancy in the male-to-female ratio is even more pronounced in laryngeal tumors, in which carcinoma is 4-5 times more common in men. This ratio has declined in the last 20 years, possibly reflecting the increased number of women using tobacco products during this period (1). The number of new cases of head and neck cancers in the United States was 40,490 in 2006, accounting for about 3% of adult malignancies. 11,170 patients died of their disease in 2006 (2).

In certain parts of India and Southeast Asia, the practice of mixing cured tobacco with betel nuts has been associated with head and neck cancers. More than 200 million persons are thought to engage in this practice worldwide. A resultant 2.8 times higher relative risk of cancer exists for these individuals, and this increases to more than 10 times when smoking is also practiced. In these areas, the incidence of oral cancer alone is greater than 25 cases per 100,000 Persons ⁽¹⁾.

Several methods for treatment of cancer of the head and neck are acceptable, including surgery, radiotherapy, chemotherapy, new molecularly targeted agents, and combinations of these. New investigative treatments include immunotherapy and gene therapy. Factors that influence the choice of treatment are the site, grade, and stage of the primary tumor, patient age, and general medical condition. Goals of treatment generally consist of removal of cancer load, maintenance of quality of life, and prevention of subsequent primary tumors ⁽¹⁾.