NUMERICAL INVESTIGATION FOR CONTROL OF SMOKE IN DOMED MOSQUES

by

Eng. Osama Mansour Selim El-Sayed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

MECHANICAL POWER ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015

NUMERICAL INVESTIGATION FOR CONTROL OF SMOKE IN DOMED MOSQUES

by

Eng. Osama Mansour Selim El-Sayed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

MECHANICAL POWER ENGINEERING

Under the Supervision of

Prof. Dr. Essam E. Khalil Hassan Khalil

Mechanical Power Engineering Department
Faculty of Engineering
Cairo University

Dr. Esmail Mohamed Ali El-Bialy

Dr. Waleed A. Abdelmaksoud

Mechanical Power Engineering Department
Faculty of Engineering
Cairo University

Mechanical Power Engineering Department
Faculty of Engineering
Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015

NUMERICAL INVESTIGATION FOR CONTROL OF SMOKE IN DOMED MOSQUES

by

Eng. Osama Mansour Selim El-Sayed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

MECHANICAL POWER ENGINEERING

Approved by the

Examining Committee

Prof. Dr. Essam E. Khalil Hassan Thesis Advisor and Member

Prof. Dr. Mahmoud Ahmed Fouad Member (Internal examiner)

Prof. Dr. Osama Ezzat Abdel-Latif Member (External examiner)

(Professor at Faculty of Engineering Banha University)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015

Engineer: Osama Mansour Selim El-Sayed

Date of Birth: 25 / 03 / 1990

Nationality: Egyptian

E-mail: Osama.Selim@live.com

Phone.: 01285262268

Address: 55, Abnaa Kaaemat Street, Embaba, Giza

Registration Date: 01/10/2013

Awarding Date: / /

Degree: Master of Science

Department: Mechanical Power Engineering

Supervisors: Prof. Dr. Essam E. Khalil Hassan

Dr. Esmail Mohamed Ali El-Bialy

Dr. Waleed A. Abdelmaksoud

Examiners: Prof. Dr. Essam E. Khalil Hassan

Prof. Dr. Mahmoud Ahmed Fouad

Prof. Dr. Osama Ezzat Abdel-Latif (Professor at Banha University)

Title of Thesis: NUMERICAL INVESTIGATION FOR CONTROL OF SMOKE IN DOMED MOSQUES

Key Words: Large buildings, smoke control, Mosques, Domed, Fire Dynamics Simulator

Summary:

The study shows the effect of Heat Release Rate (HRR), fire location and natural vents location on visibility, carbon monoxide concentration, smoke layer temperature and evacuation time. The results show that increasing the HRR, reduces visibility, increase carbon monoxide concentration and increase smoke layer temperature at human level as a result it increase the evacuation time. Also, when fire takes place at the center of the mosque, the smoke speared is faster than that one in corner fire. Finally the results show that the best position of natural vents is to be at the ceiling which give a better conditions for the occupants according to NFPA 130.

ACKNOWLEDGMENT

Firstly, I would like to thank Almighty ALLAH, whom I owe everything, for his generousness and support through all my life.

I would like to thank Prof. Essam E.Khalil, Dr. Esmail Mohamed Ali El-Bialy and Dr. Waleed A. Abdelmaksoud for their guidance and unremitting encouragement. I am grateful to them, and to all my respectful professors, for mentoring me throughout my undergraduate and graduate study.

I extend my gratitude to Eng. Mahmoud Amer for his valuable suggestions and noteworthy discussions. Thanks are also to my colleagues for their encouragement and support.

I would like also to thank Dr. Heba El-Sayed Teba for her great effort to help me in getting some information about the large mosque.

Finally, I owe a lifelong debt to my parents, my sister and my brother for their motivation through finishing this thesis and their patience and care and for maintaining a perfect environment for study and research.

TABLE OF CONTENTS

ACKNOWLEDGMENT	iv
TABLE OF CONTENTS	iviv
LIST OF TABLES	vi
LIST OF FIGURES	vii
NOMENCLATURE	xviii
Greek Letters	xix
Superscripts and Subscripts	XX
Abbreviations	xxi
1.INTRODUCTION	1
1.1 General	1
1.2 Fire cause	1
1.3 Firefighting procedure	2
1.4 Objectives of smoke management	3
1.4.1 Hazards of smoke	3
1.4.2 Buildings ventilation object	6
1.5 Plugholing.	8
1.6 Backdraft	8
1.7 Present work	9
2. LITERATURE REVIEW	10
2.1 Mechanical ventilation effect	10
2.2 Heat release rate and smoke exhaust volume	12
2.3 Door gab effect on smoke spread rate, temperature and	_
gradientgradient	15

	2.4 Atrium shape, height, size and openings location	. 18
	2.4.1 Visualization of smoke formation.	. 19
	2.4.2 Smoke filling time	. 20
	2.5 Vent location effect.	. 21
	2.6 Door effect.	. 23
	2.7 Influence of different make up air on the efficiency of mechanical exha	aust
	system	.25
	2.8 Effect of location of fire sources	. 26
	2.9 Aspect ratio effect on smoke layer temperature	. 29
	2.10 The impact of makeup air supply arrangement	. 30
3	. GOVERNING EQUATIONS	. 34
	3.1 Governing Equations	. 34
	3.1.1 Mass and Species Transport	. 34
	3.1.2 Momentum Transport	. 34
	3.1.3 Energy Transport	. 35
	3.1.4 Equation of State.	. 36
	3.2 Description of FDS	. 36
	3.2.1 Hydrodynamic Model.	. 37
	3.2.2 Combustion Model	. 37
	3.2.3 Radiation Transport	. 37
	3.3 Visibility	. 37
	3.4 Large Eddy Simulation (LES)	. 38
	3.5 Evacuation of Agents.	. 39
	3.5.1 Human Movement Model	39

	3.5.2 Fire and Human Interaction	41
	3.6 Combustion (Mixture Fraction Model)	43
	3.7 Radiation (Radiation Transport Equation).	. 43
	3.8 The Heat Conduction Equation for a Solid.	. 45
	3.9 Radiation Heat Transfer to Solids	45
	3.10 Convective Heat Transfer to Solids	. 46
4	VALIDATION AND GRID SENSITIVITY ANALYSIS	. 47
	4.1 Model description	47
	4.2 Model verification	. 48
	4.3 Validation Results	. 48
	4.3.1 Case 1 Four windows (17-18-19-20) on two side walls are open	49
	4.3.2 Case 2 Four windows (11- 12- 15 - 16) on two side walls are open	50
	4.4 Mosque model configuration.	. 51
	4.5 Mosque grid sensitivity	53
	4.5.1 Main hall	. 54
	4.5.2 First floor	. 54
	4.5.3 Second floor.	55
	4.6 Simulation cases.	56
5	RESULTS AND DISCUSSION	57
	5.1 Effect of heat release rate.	57
	5.1.1 Effect on visibility	57
	5.1.2 Effect on smoke layer height.	62
	5.1.3 Effect on carbon monoxide concentration	. 64
	5.1.4 Effect on temperature	66

5.1.5 Effect on evacuation	68
5.2 Effect of fire location.	69
5.2.1 Effect on visibility.	70
5.2.2 Effect on smoke layer height.	73
5.2.3 Effect on carbon monoxide concentration	75
5.2.4 Effect on temperature.	77
5.2.5 Effect on evacuation.	79
5.3 Effect of natural ventilation location	79
5.3.1 Effect on visibility	82
5.3.2 Effect on smoke layer height.	85
5.3.3Effect on carbon monoxide concentration.	87
5.3.4 Effect on temperature	89
5.3.5 Effect on evacuation.	91
6. CONCLUSIONS AND FUTURE WORK RECOMMENDATIONS	92
6.1 Conclusions	92
6.2 Suggested future work.	92
REFERENCES	93

LIST OF TABLES

Table 1.1: Air conditioner historical accidents [3]	2
Table 2.1 : Simulation for different amolto exhaust existence [14]	22
Table 2.1 : Simulation for different smoke exhaust systems [14]	44
Table 4.1 : Simulation cases	56

LIST OF FIGURES

Figure 1.1 : Firefighting procedure [3]
Figure 1.2 : Smoke management concept [4]
Figure 1.3 : Tenability criteria for no exposure [5]4
Figure 1.4 : Tenability criteria for short exposure [5]
Figure 1.5 : Tenability criteria for long exposure [5]
Figure 1.6 : Natural ventilation system [6]
Figure 1.7 : Mechanical ventilation system [6]7
Figure 1.8 : Plugholing phenomenon [7]
Figure 2.1 : The main dimensions of the Murcia test facility [9]
Figure 2.2: Temperature measurements and predictions at the plume and exhaust fans for 2.28 MW. 4.55 m high in a); 8.55 m high in b); 12.55 m high in c); exhaust fan in d) [9].
Figure 2.3: Temperature measurements and predictions at the plume and exhaust fans for 2.28 MW. 4.55 m high in a); 8.55 m high in b); 12.55 m high in c); exhaust fan in d) [9].
Figure 2.4: Simulated result of smoke layer visibility under different Heat release rates for (a) Simulated result of smoke layer visibility in simulation 4 (b) Simulated result of smoke layer visibility in simulation 5 [10]
release rates for (a) Simulated result of smoke layer temperature under different fleat release rates for (a) Simulated result of smoke layer temperature in simulation 4 (b) Simulated result of smoke layer temperature in simulation 5 [10]
Figure 2.6: Smoke layer height with time at different heat release rate (a) Simulation 4 (b) Simulation 5 [10]
Figure 2.7: Single compartment fire used in this study: (a) Layout of the generic case and (b) Detailed configurations of the fire-rated door gap [12]

Figure 2.8 : Smoke spreading velocities at the four different door gaps [12] 16
Figure 2.9 : Pressure gradients across the door gaps and its variation with respect to time [12]
Figure 2.10 : Averaged temperature of the gases passing through the door gaps [12]
Figure 2.11 : The accumulated volume of smoke passing through the door gaps [12]
Figure 2.12 : Schematic diagrams for the atrium configurations [13]
Figure 2.13: The descent of the smoke layer on a side wall after the ceiling is covered in the three atrium configurations [13]
Figure 2.14 : Soot mass fraction and temperature as a function of height at 60 s [13]
Figure 2.15 : Soot mass fraction and temperature as a function of height at 120 s [13]
Figure 2.16 : Soot mass fraction and temperature as a function of height at 300 s [13]
Figure 2.17 : Smoke layer height with time at different exhaust system [14] 23
Figure 2.18: Results of the case with natural ventilation and door effect [15] 24
Figure 2.19: Results of the case with forced ventilation and door effect [15]244
Figure 2.20 : Schematic diagram of simulation space [16]
Figure 2.21 : Measuring point smoke temperature at a) 50 s - b) 150 s - c) 250 s - d) 350 s [16]
Figure 2.22 : Schematic diagram of fire sources at different locations [14] 27
Figure 2.23 : Mean characteristics of smoke with fire sources at different locations descent of smoke layer [14]

Figure 2.24: Mean characteristics of smoke with fire sources at different locations:
(a) distribution of mean soot density, and (b) distribution of mean temperature [14]
Figure 2.25 : Comparison of smoke layer height for fires of the same size but at different positions [17].
Figure 2.26: Temperature prediction with different atrium geometry aspect factors (A/H²) [18]
Figure 2.27: Air supply vent configurations (plan view), (a) Symmetric, (b) Asymmetric, (c) One per floor, (d) Corner [19]
Figure 2.28 : Velocity v.s smoke layer depth [19]
Figure 2.29: heat release rates for different configurations. a) Asymmetric vs. symmetric. b) one vent per floor vs. symmetric. c) Asymmetric vs. corner vent heat release rate at 2 m/s [19]
Figure 3.1: The concept of the social force [30]
Figure 3.2: The shape of the human body [30]
Figure 4.1 : Schematic diagram of the PolyU/USTC atrium [38] 47
Figure 4.2 : Descent of smoke with high heat release rate of 4 MW [38] 48
Figure 4.3 Smoke layer height variation with Time [38]
Figure 4.4 Soot density variation with Time [38]
Figure 4.5 Smoke layer temperature variation with time [38] 50
Figure 4.6 Smoke layer height variation with time [38]
Figure 4.7 Soot density variation with time [38]
Figure 4.8 Smoke layer temperature variation with time [38]
Figure 4.9 : Ceiling floor type air conditioner
Figure 4.10 : Side view of mosque
Figure 4.11: Top view of mosque

Figure 4.12 Smoke layer temperature variation with time
Figure 4.13 Smoke layer temperature variation with time
Figure 4.14 Smoke layer temperature variation with time
Figure 5.1 : Case 1
Figure 5.2 : Case 2
Figure 5.3 : Case 3
Figure 5.4: Visibility change at level 1.8 m from main hall ground for case 1, case 2 and case 3 at a) t= 300 s. b) t= 600 s. c) t=900 s
Figure 5.5: visibility change at level 1.8 m from first floor ground for case 1, case 2 and case 3 at a) t= 40 s. b) t= 80 s. c) t=120 s
Figure 5.6: Visibility change at level 1.8 m from second floor ground for case 1, case 2 and case 3 at a) t= 100 s. b) t= 150 s. c) t= 200 s
Figure 5.7: Main hall Smoke layer height variation with time
Figure 5.8: First floor Smoke layer height variation with time
Figure 5.9 : Second floor Smoke layer height variation with time
Figure 5.10 : CO-concentration variation with time at level 1.8 m from the ground level of main hall
Figure 5.11 : CO-concentration variation with time at level 1.8 m from the ground level of first floor
Figure 5.12 : CO-concentration variation with time at level 1.8 m from the ground level of second floor
Figure 5.13 : Smoke layer temperature variation with time at level 1.8 m from the ground level of main hall
Figure 5.14 : Smoke layer temperature variation with time at level 1.8 m from the ground level of first floor

Figure 5.15: smoke layer temperature variation with time at level 1.8 m from the
ground level of second floor
Figure 5.16: Number of prayer with evacuation time
Figure 5.17 FED values for the prayers
Figure 5.18 : Case 4
Figure 5.19 : Case 5
Figure 5.20: visibility change at level 1.8 m from main hall ground for case 4 and case 5 at a) t= 400 s. b) t= 800 s. c) t=1500 s
Figure 5.21: visibility change at level 1.8 m from first floor ground for case 4 and case 5 at a) t= 150 s. b) t= 300 s. c) t=450 s
Figure 5.22: visibility change at level 1.8 m from second floor ground for case 4 and case 5 at a) t= 200 s. b) t= 300 s. c) t= 400 s
Figure 5.23: Main hall smoke layer height variation with time
Figure 5.24 : first floor Smoke layer height variation with time
Figure 5.25 : Second floor smoke layer height variation with time
Figure 5.26 : CO-concentration variation with time at level 1.8 m from the ground level of main hall
Figure 5.27 : CO-concentration variation with time at level 1.8 m from the ground level of first floor
Figure 5.28 : CO-concentration variation with time at level 1.8 m from the ground level of second floor
Figure 5.29 : smoke layer temperature variation with time at level 1.8 m from the ground level of main hall
Figure 5.30 : smoke layer temperature variation with time at level 1.8 m form the ground level of first floor
Figure 5.31 : smoke layer temperature variation with time at level 1.8 m form the ground level of second floor