IMPACT OF LONG – TERM MANAGEMENT PRACTICES ON SOIL PROPERTIES UNDER THE CONDITIONS OF EGYPT

By

OMNIA MOHAMED MOHAMED ABDOU WASSIF

B. Sc. Agri. Sc. (Soil Science), Benha University, 2003. M. Sc. Agric. Sc. (Soil Science), Benha University, 2011.

A Thesis Submitted in Partial Fulfillment

Of

The Requirements For The Degree of

DOCTOR OF PHILOSOPHY

in Agricultural Sciences (Soil Science)

Department of Soil Science Faculty of Agriculture Ain Shams University

Approval Sheet

IMPACT OF LONG – TERM MANAGEMENT PRACTICES ON SOIL PROPERTIES UNDER THE CONDITIONS OF EGYPT

By

OMNIA MOHAMED MOHAMED ABDOU WASSIF

B. Sc. Agri. Sc. (Soil Science), Benha University, 2003. M. Sc. Agric. Sc. (Soil Science), Benha University, 2011.

s thesis for Ph.D. degree has been approved by:
Soliman Mohammed Soliman Prof. Emeritus of Soils, Atomic Energy Authority.
Eid Morsy Khaled Prof. Emeritus of Soil Chemistry, Faculty of Agriculture, Ain Shams University.
El-Tony Mohamed Ali El-Tony Prof. Emeritus of Soil Physics, Faculty of Agriculture, Ain Shams University.
Mohammed El-Sayed El-Nennah Prof. Emeritus of Soil Chemistry, Faculty of Agriculture, Ain Shams University.

Date of Examination: 12 /04 / 2017

IMPACT OF LONG – TERM MANAGEMENT PRACTICES ON SOIL PROPERTIES UNDER THE CONDITIONS OF EGYPT

By

OMNIA MOHAMED MOHAMED ABDOU WASSIF

B. Sc. Agri. Sc. (Soil Science), Benha University, 2003. M. Sc. Agric. Sc. (Soil Science), Benha University, 2011.

Under the supervision of:

Dr. Mohammed El-Sayed El-Nennah

Prof. of Soil Chemistry, Department of Soil Science, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. El-Tony Mohamed Ali El-Tony

Prof. of Soil physics, Department of Soil Science, Faculty of Agriculture, Ain Shams University.

Dr. Alaa Eldin Ali Abdel Fattah

Researcher Prof. of Soils, Department of Soil Conservation Department, Water and Desert Soils Resources Division, Desert Research Center.

ABSTRACT

Omnia Mohamed Mohamed Abdou Wassif: Impact of Long – Term Management Practices on Soil Properties Under the Conditions of Egypt. Unpublished Ph.D. Thesis, Department of Soil Science, Faculty of Agriculture, Ain Shams University, 2017.

The objectives of the current study were to evaluate the changes of soil quality indices as a result of long term organic and conventional management systems and to assess quantitatively soil sustainability of such management system and selecting the most appropriate procedure for evaluating sustainability. El-Sharqia and El-Ismailia governorates were selected as study areas situated in arid climatic conditions in Egypt. Two types of indices i.e., sustainability index (SI) and cumulative rating approach (CR) were used to compare between conventional and organic farming systems concerning sustainability. The study included 12 farms at El-Sharqia governorate and 9 farms at El-Ismailia governorate were subjected to conventional and organic farming. The farms were varied in cultivation period and land use.

Multivariate statistical techniques were used to select minimum data set (MDS) for each soil depth for evaluating soil quality and sustainability. This MDS was used to assess soil sustainability by SI and CR methods. The results of principal component analysis (PCA) showed that within each PC, the variable with the highest factor loading was selected as the most important contributor to the PC for MDS.

The results obtained for comparison between two approaches for assessing sustainability status was carried out. The higher SI indicated soil quality improvement and higher CR indicated poor soil quality and the CR procedure indicated more efficiency than SI approach for assessing sustainable. Moreover, comparing between conventional and organic farming systems concerning sustainability status; the organic farming was more sustainability than conventional farms. The results

obtained in El-Sharqia and El-Ismailia farms were also represented by the relationship between biomass yield and MDS with one, two and three parameters models. Such models were used for predicting biomass yield and the best models was the three parameters model associated with high R² under both conditions. Moreover, there was inverse relationship between CR and biomass yield as a dependent variable and CR as independent variables in both farming systems of El-Sharqia and EL-Ismailia farms with one and two parameters models and it can also be used in the prediction of biomass yield.

Keywords: Long term farming system, Minimum data set (MDS), Soil quality, Soil quality indicators, Soil properties, Soil sustainability, Soil sustainability indicators.

ACKNOWLEDGMENT

The authoress expresses her deepest gratitude, sincere thanks and appreciation to **Allah**, who bestows success and guides to the straight path. Then to the members of supervising committee, deep thanks are extended to *Prof.Dr.* **Mohamed Elsayed El-Nennah** Prof. of Soils, Fac. of Agric., Ain Shams University, for his supervision sincere gratitude, encouragement and valuable advice during the course of this thesis. The authoress also expresses her gratitude to *Prof.Dr.* **El-Tony. Mohamed Ali El-Tony** Prof. of Soils, Fac. of Agric., Ain Shams University, in the same Dept. for his supervising and the interest providing valuable guidance the course of this study.

Thanks, great appreciation and gratitude are expressed to *Prof. Dr.* **Alaa Abdel Fatah Ali,** Prof. of Soils, Desert Research Center (DRC), for his supervision, fruitful cooperation, and generous assistance during the course of this study.

The authoress also wishes to express her thanks to the spirit of the late for *Prof. Dr.* **Mahmoud Yousef Afifi,** Prof. of Soils, Desert Research Center (DRC), who proposed, supervision and valuable advice all through to get this thesis for his special thanks and God bless his soul.

A special appreciate for *Prof. Dr.* Mohamed Mohamed Abdou Wassif, Prof. of Soils, Desert Research Center (DRC), for his continuous encouragement.

Effort and continuance encouragement and thanks are also due to **staff members** in soil conservation department of Desert Research Center (DRC) for their fruitful cooperation.

Finally, The authoress wish to express her deepest appreciation to her mum, her husband, her kids and all members of her family for continuous support, help and credible encouragement for making this work possible.

CONTENTS

	Page
LIST OF TABLES	III
LIST OF FIGURES	VII
LIST OF ABBREVIATIONS	XII
INTRODUCTION	1
REVIEW OF LITERATURE	3
2.1. Long term farming systems	3
2.1.1. Conventional farming systems	5
2.1.2. Organic farming systems	7
2.2. The concept of sustainable agriculture	11
2.2.1. Sustainable management systems	12
2.2.2. Sustainable agriculture indicators	16
2.2.3. Assessment of sustainable agriculture	19
2.2.4. Challenges of sustainable agriculture in Egypt	23
2.3. The concept of soil quality	25
2.3.1. Soil quality indicators	26
2.3.2. Soil quality assessment tool for evaluating sustainable	
management	30
MATERIALS AND METHODS	34
3.1. Study areas	34
3.1.1. El-Sharqia governorate	34
3.1.2. El-Ismailia governorate	35
3.2. Soil sampling and methods of analysis	35
3.2.1. Physical properties	40
3.2.2. Chemical properties	41
3.2.3. Fertility status	41
3.3. Biomass yield measurement	41
3.4. Statistical analysis	42
3.5. Assessment of soil sustainability status	43
3.5.1. Sustainability index (SI)	43
3.5.2. Cumulative ratings index (CR)	43

RESULTS AND DISCUSSION	45
4.1. Physical properties of the studied soil	45
4.1.1. Particle size distribution.	45
4.1.2. Carbonate content.	46
4.1.3. Available soil moisture	46
4.1.4. Soil bulk density and porosity	49
4.1.5. Soil erodibilty (I) and coarse fragment fraction (CFF)	50
4.2. Chemical properties of the studied soils	50
4.2.1. Electrical conductivity (ECe) and soluble ions and	
sodium adsorption ratio(SAR)	51
4.2.2. Soil pH	55
4.2.3. Cation exchange capacity, (CEC)	56
4.3. Soil fertility status of the studied farms	56
4.4. Some basic chemical properties of irrigation water of the	
studied farms	59
4.5. Grouping of soil properties	61
4.6. Soil quality assessment	63
4.7. Soil sustainability status	85
4.7.1. Sustainable index (SI)	85
4.7.2. Cumulative rate (CR)	88
4.8. The relationship between MDS and biomass yield	106
4.9. The relationship between CR and biomass yield	116
SUMMARY AND CONCLUSION	120
REFERENCES	129
ARABIC SUMMARY	

LIST OF TABLES

Table		Page
1	The location and description of the selected farms at El-	
	Sharqia governorate	37
2	The location and description of the selected farms at El-	
	Ismailia governorate	39
3	Some basic soil physical properties of the studied farms at	
	El-Sharqia Governorate.	47
4	Some basic soil physical properties of the studied farms at	
	El-Ismailia Governorate	48
5	Some basic soil chemical properties of the studied farms	
	at El-Sharqia Governorate	53
6	Some basic soil chemical properties of the studied farms	
	at El-Ismailia Governorate	54
7	Soil fertility status of the studied farms at El-Sharqia	
	Governorate	58
8	Soil fertility status of the studied farms at El-Ismailia	
	Governorate	58
9	Some basic chemical properties of irrigation water used in	
	the studied farms at El-Sharqia Governorate	60
10	Some basic chemical properties of irrigation water used in	
	the studied farms at El-Ismailia Governorate	60
11.a	The Pearson correlation coefficient among soil physical	
	and chemical properties in (0-20 cm) depth at El-Sharqia	
	governorate.	62
11.b	The Pearson correlation coefficient among soil physical	
	and chemical properties in (20-40 cm) depth at El-Sharqia	
	governorate.	64
11.c	The Pearson correlation coefficient among soil physical	
	and chemical properties in (40-60 cm) depth at El-Sharqia	
	governorate.	65

Table		Page
12.a	The Pearson correlation coefficient among soil physical	
	and chemical properties in (0-20 cm) depth at El-Ismailia	
	governorate	66
12.b	The Pearson correlation coefficient among soil physical	
	and chemical properties in (20-40 cm) depth at El-Ismailia	
	governorate	67
12.c	The Pearson correlation coefficient among soil physical	
	and chemical properties in (40-60 cm) depth at El-Ismailia	
	governorate	67
13.a	The retained principle components (PCs) obtained from	
	eighteen soil physical and chemical properties of all farms	
	at El-Sharqia governorate.	68
13.b	The retained principle components (PCs) obtained from	
	twelve soil physical and chemical properties of all farms	
	at El-Sharqia governorate.	69
14.a	The retained principle component (PCs) obtained from	
	eighteen soil physical and chemical properties of	
	conventional farms at El-Sharqia governorate.	70
14.b	The retained principle component (PCs) obtained from	
	twelve soil physical and chemical properties of	
	conventional farms at El-Sharqia governorate.	71
15.a	The retained principle component (PCs) obtained from	
	eighteen soil physical and chemical properties of organic	
	farms at El-Sharqia governorate.	72
15.b	The retained principle component (PCs) obtained from	
	twelve soil physical and chemical properties of organic	
	farms at El-Sharqia governorate.	73
16.a	The retained principle components (PCs) obtained from	
	eighteen soil physical and chemical properties of all farms	
	of El - Ismailia Governorate.	75

Table		Page
16.b	The retained principle components (PCs) obtained from	
	twelve soil physical and chemical properties of all farms	
	of El - Ismailia Governorate.	76
17.a	The retained principle component (PCs) obtained from	
	eighteen soil physical and chemical properties of	
	conventional farms of El-Ismailia Governorate	80
17.b	The retained principle component (PCs) obtained from	
	twelve soil physical and chemical properties of	
	conventional farms of El - Ismailia Governorate.	81
18.a	The retained principle component (PCs) obtained from	
	eighteen soil physical and chemical properties of organic	
	farms of El-Ismailia Governorate.	82
18.b	The retained principle component (PCs) obtained from	
	twelve soil physical and chemical properties of organic	
	farms of El-Ismailia Governorate.	83
19	Relative weighting factors (RWF) based on the threshold	
	values of soil quality indicators using the cumulative	
	rating (CR)	89
20	Soil sustainability classification based on cumulative	
	rating (CR) approach according to ten soil indicators and	
	five soil indicators.	89
21	Simple and multiple regression analysis for measured	
	yield (Ry%) as the dependent variable and selected soil	
	properties as minimum data set (MDS) as independent	
	variables at El-Sharqia governorate	107
22	Simple and multiple regression analysis for meaured yield	
	(Ry%) as the dependent variable and selected soil	
	properties as minimum data set (MDS) as independent	
	variables at El-Ismalia governorate	111

Table		Page
23	Simple and multiple regression analysis for measured	
	yield (Ry%) as the dependent variable and selected soil	
	properties as cumulative rating (CR) as independent	
	variables at El-Sharqia governorate	116
24	Simple and multiple regression analysis for measured	
	yield (Ry%) as the dependent variable and selected soil	
	properties as cumulative rate (CR) as independent	
	variables at El-Ismailia governorate	118

LIST OF FIGURES

No.		Page
1	Geographical location of the study area at El-Sharqia	
	governorate	36
2	Geographical location of the study area at El-Ismailia	
	governorate	38
3	Soil sustainability based on sustainable index (SI)	
	approach calculated based on means of soil quality	
	indicators to form minimum data set (MDS) for	
	conventional farms (CF) and organic farms (OF) in depths	
	(0-20), (20-40), (40-60) in each farm at El-Sharqia	
	governorate.	86
4	Soil sustainability based on sustainable index (SI)	
	approach calculated based on means of soil quality	
	indicators to form minimum data set (MDS) for	
	conventional farms (CF) and organic farms (OF) in depths	
	(0-20), (20-40), (40-60) in each farm at El-Ismailia	
	governorate.	87
5	Soil quality indicators calculated by relative weighting	
	factors (RWF) in Cumulative rating (CR) approach as total	
	data set (TDS) selected from studied soil samples for	
	conventional farms in depths (0-20, 20-40, 40-60 cm) at	
	El-Sharqia governorate	90
6	Soil quality indicators calculated by relative weighting	
	factors (RWF) in Cumulative rating (CR) approach as total	
	data set (TDS) selected from studied soil samples for	
	organic farms in depths (0-20, 20-40 & 40-60) at El-	
	Sharqia governorate	90

No.		Page
7	Soil quality indicators calculated by relative weighting	
	factors (RWF) in Cumulative rating (CR) approach as total	
	data set (TDS) selected from studied soil samples for	
	conventional farms in depths (0-20, 20-40, 40-60 cm) at	
	El-Ismailia governorate.	92
8	Soil quality indicators calculated by relative weighting	
	factors (RWF) in Cumulative rating (CR) approach as total	
	data set (TDS) selected from studied soil samples for	
	organic farms in depths (0-20, 20-40 & 40-60) at El-	
	Ismailia governorate.	92
9	Soil sustainability based on cumulative rating (CR)	
	approach calculated based on total data set (TDS) and	
	minimum data set (MDS) for all farms in depths (0-20,20-	
	40 &40-60) in El-Sharqia governorate	95
10	Relationship between Cumulative Rating CR calculated	
	based on (TDS) and Cumulative Rating CR calculated	
	based on (MDS) selected from studied soil samples at	
	Elsharqia governorate.	96
11	Soil sustainability based on cumulative rating (CR)	
	approach calculated based on total data set (TDS) and	
	minimum data set (MDS) for all farms in depths (0-20, 20-	
	40 &40-60) at El-Ismailia governorate.	97
12	Relationship between Cumulative Rating CR calculated	
	based on (TDS) and Cumulative Rating CR calculated	
	based on (MDS) selected from studied soil samples at El-	
	Ismailia governorate.	98

No.		Page
13	Soil quality indicators calculated by relative weighting	
	factors (RWF) in Cumulative rating (CR) approach as	
	minimum data set (MDS) selected from studied soil	
	samples for conventional farm in depths (0-20, 20-40, 40-	
	60 cm) at El-Sharqia governorate	100
14	Soil quality indicators calculated by relative weighting	
	factors (RWF) in Cumulative rating (CR) approach as	
	minimum data set (MDS) selected from studied soil	
	samples for organic farms in depths (0-20, 20-40 & 40-	
	60) at El-Sharqia governorate	100
15	Soil quality indicators calculated by cumulative rating	
	(CR) approach as minimum data set (MDS) selected from	
	studied soil samples for conventional farms at El-Sharqia	
	governorate in depths (0-20, 20-40 & 40-60)	101
16	Soil quality indicators calculated by cumulative rating	
	(CR) approach as minimum data set (MDS) selected from	
	studied soil samples for organic farm at El-Sharqia	
	governorate in depths (0-20, 20-40, 40-60 cm)	101
17	Soil quality indicators calculated by relative weighting	
	factors (RWF) in Cumulative rating (CR) approach as	
	minimum data set (MDS) selected from studied soil	
	samples for conventional farms in depths (0-20, 20-40,	
	40-60 cm) at El-Ismailia governorate.	102
18	Soil quality indicators calculated by relative weighting	
	factors (RWF) in Cumulative rating (CR) approach as	
	minimum data set (MDS) selected from studied soil	
	samples for organic farms in depths (0-20 , 20-40 & 40-	
	60) at El-Ismailia governorate.	102