Amino Acid Abnormalities In Pediatric Patients with Chronic Renal Failure & Vascular Effect of L-Arginine Supplementation

Thesis Submitted for Partial Fulfillment of M.D. Degree in Medical Human Genetics

By

Heba Salah Abdel Khalik Al-Abd

M.B.B.Ch, Master Degree in Medical Human Genetics

Supervisors

Prof. Dr. Mohamed Abd- Aladl El Sawi

Professor in Pediatrics Department, and the Head of Genetic Unit Faculty of Medicine- Ain Shams University

Prof. Dr. Mona Mohamed Zaki

Professor of Clinical Pathology Faculty of Medicine- Ain Shams University

Prof. Dr. Ihab Zaki EL-Hakim

Professor of Pediatrics Faculty of Medicine- Ain Shams University

Prof. Dr. Eshrak Emam Hassanen Hassan

Professor of Radiodiagnosis Faculty of Medicine- Ain Shams University

Dr. Mohamed Elsayed Mohamed Mowafy

Lecturer in Pediatrics Faculty of Medicine- Ain Shams University

Faculty of Medicine- Ain Shams University 2010

<u>Acknowledgment</u>

First and above all, all thanks to **Allah** The Merciful, The Compassionate, without His help, I could not finish this work.

Words stands short when comes to express my deep gratitude to *Prof. Dr. Mohamed El Sawi*, Prof. of Pediatrics and Supervisor of Genetics Unit, Faculty of Medicine, Ain Shams University, for his encouragement and advice which have been the main factors to complete this work.

I am deeply grateful to *Prof. Dr. Mona Mohamed Zaki*, Prof. of Clinical Pathology, Faculty of Medicine, Ain Shams University, who devoted her experience to facilitate the production of this work.

I am delighted to express my cordial thanks to *Prof. Dr. Ihab Zaki EL-Hakim*, Prof. of Pediatrics, Faculty of Medicine, Ain Shams University, for his great assistance throughout this work.

I wish to introduce my respect to *Prof. Dr. Eshrak Emam Hassanein*, Prof. of Radio diagnosis, Faculty of Medicine, Ain Shams University, for her encouragement.

Many thank to *Dr. Mohamed Elsayed Mohamed Mowafy*, Lecturer in Pediatrics, Faculty of Medicine, Ain Shams University, for his kind care and cooperation.

My deep gratitude to *Dr. Shimaa Abd-Alsataar* Assistant Lecturer in Radio diagnosis, Faculty of Medicine, Ain Shams University, who devoted her time and effort to complete this work.

I am also delighted to express my thanks to all my dear professors, my colleagues, and my patients.

Heba Salah

DEDICATION TO

My dear father who wished to see me a doctor but died before it becomes true

My dear mother for her great care, kindness, and help

My helpful & supportive family

سورة البقرة (آية 32)

Contents

List of abbreviations	II
List of figures	<i>IV</i>
List of tables	VI
Introduction and Aim of the work	1
Review of literature	4
Chapter I	4
Chapter II	30
Subjects and Methods.	54
Results	64
Discussion	86
Conclusion and Recommendations	94
Summary	96
Appendix	99
References	104
Arabic summary	

List of Abbreviations

AA	Amino acid
ADMA	Asymmetric dimethylarginine
ATP	Adenosine triphosphate
AMPA	Alpha-amino-3-hydroxy-5-methyl-4-
	isoxazolepropionic acid
BCAA	Branched-chain amino acids
BCKA	Branched-chain keto acids
BH4	Tetrahydrobiopterin
BMI	Body mass index
Ca	Calcium
cAMP	Cyclic adenosine monophosphate
CAPD	Continuous ambulatory peritoneal dialysis
CBC	Complete blood count
cGMP	Cyclic guanosine monophosphate
CKD	Chronic kidney disease
COX	Cyclooxygenase
CRF	Chronic renal failure
CRP	C-reactive protein
CVD	Cardiovascular disease
DDAH	Dimethylarginine dimethylaminohydrolase
EAAs	Essential amino acids
EDD	Endothelium-dependent vasodilatation
ENDD	Endothelium non dependent vasodilatation
ESRD	End stage renal disease
FAA	Free amino acids
FMD	Flow mediated dilatation
GFR	Glomerular filtration rate
GMP	Guanosine monophosphate
GSH	Glutathione
GTP	Guanosine triphosphate
HD	Haemodialysis
HTN	Hypertension

IL-1	Interleukin 1
IL-6	Interleukin-6
LDL	Low-density lipoprotein
mRNA	Messenger RNA
MTHFR	Methylenetetrahydrofolate reductase
NO	Nitric oxide
NOS	NO synthases
oxLDL	Oxidized LDL
P	Phosphate
PDGF	Platelet derived growth factor
RBC	Red blood cells
ROS	Reactive oxygen species
SDMA	Symmetric dimethylarginine
SMC	Smooth muscle cells

Ш

List of Figures

No	Title	Page
1	General structure of alpha - amino acid	4
2	Diagram grouping amino acids according to their	8
	properties	
3	Chemical structure of alpha - amino acids	10
4	Sources and metabolic fates of arginine	13
5	Overview of arginine metabolic pathways	17
6	Pathways of arginine synthesis	18
7	Citrulline/NO cycle.	22
8	Vascular relaxation mediated by NO.	23
9	Structures of L-Arginine, N ^G -Monomethyl-L-	28
	Arginine, Asymmetric Dimethylarginine, and	
	Symmetric Dimethylarginine	
10	Biochemical pathway for generation and	29
	degradation of ADMA	
11	Reactive oxygen species impair vascular function	51
12	The Amino Acid Analyzer S 433	60
13	Brachial artery basal flow, diameter and flow after	62
	supplementation of sublingual dinita	
14	Bar chart showing the difference between HD	68
	patients and controls as regard hydroxyl, acidic	
	amino acids and imino acids.	
15	Bar chart showing the difference between HD	69
	patients and controls as regard aromatic and basic	
	amino acids	
16	Bar chart showing the difference between HD	70
	patients and controls as regard aliphatic and sulfur	
	amino acids.	
17	Bar chart showing the difference between HD	75
	patients with and without history of	
	thromboembolic manifestations as regards	
	aliphatic, acidic and imino acids.	

No	Title	Page
18	Bar chart showing the difference between HD	76
	patients with and without history of	
	thromboembolic manifestations as regard basic	
	and aromatic amino acids	
19		78
	patients with low and with normal arginine	
	concentration as regard systolic and diastolic	
	blood pressure.	
20	Bar chart showing comparison between HD	78
	patients with low and with normal arginine	
	concentration as regard Ca, P, albumin and	
	hemoglobin concentration	
21	Bar chart showing comparison between HD	82
	patients with low and with normal arginine	
	concentration as regards aliphatic, acidic amino	
	acid and imino acids.	
22	Bar chart showing comparison between HD	83
	patients with low and with normal arginine	
	concentration as regards sulfur, basic and aromatic	
	amino acids.	
23	Endothelial dependant and non dependant	85
	dilatation before (right) and after (left) L-arginine	
	supplementation	

List of Tables

No	Title	Page
1	Classification and letter codes of naturally	9
	occurring L-AA.	
2	Normal values of plasma amino acids	11
3	Causes of CRF in different countries.	32
4	Urological disorders leading to chronic renal failure	33
5	Comparison of parent consanguinity and blood	64
	transfusion in HD patients and controls.	
	Descriptive and comparative statistics of some	66
6	demographic data and laboratory investigations	
	done to HD patients and controls	
	Descriptive and comparative statistics of the	67
7	different studied amino acids in HD patients and	
	controls.	
	Descriptive and comparative statistics of some	72
8	demographic data and laboratory investigations	
8	done to HD patients with and without history of	
	thromboembolic manifestations	
	Descriptive and comparative statistics of the	73
9	vascular function of the brachial artery assessed by	
9	Doppler in HD patients with and without history of	
	thromboempolic manifestations	
	Descriptive and comparative statistics of the	74
10	studied amino acids in HD patients with and	
	without history of thromboembolic manifestations.	
	Comparison between HD patients with and without	77
11	history of thromboempolic manifestations as regard	
	L-arginine concentration.	

No	Title	Page
	Descriptive and comparative statistics of some	79
12	demographic data and laboratory investigations	
	done to HD patients with low and normal arginine	
	concentration.	
	Comparison of the vascular function of the brachial	80
13	artery assessed by Doppler in HD patients with low	
	and with normal arginine concentration.	
14	Descriptive and comparative statistics of the	81
	studied amino acids in HD patients with low and	
	with normal arginine	
15	Comparison of the vascular function of the brachial	84
	artery in HD patients with low arginine	
	concentration before and after L-arginine	
	supplementation	
16	Patients data	99
17	Controls data	102

Introduction

The uremic syndrome is a complex condition that results from an accumulation of multiple waste compounds, combined with failure of the endocrine and homeostatic functions of the kidney in end-stage chronic renal failure (CRF) patients (*Brunini et al.*, 2006A).

In Jamaican children, the cumulative annual incidence of chronic renal failure is 3.2 per million children aged < 12 years. The incidence is likely underestimated as some children may have been undiagnosed and/or not referred. Glomerulonephritis is the commonest cause of chronic renal failure (50%) followed by obstructive uropathy, reflux nephropathy, renal dysplasia and chronic pyelonephritis. Mortality rate among CRF patients is 65% (Miller and Williams, 2002).

Tawfik et al., 2002, stated that primary renal disease tends to account for a relatively small proportion of the etiologies of renal impairment in Egyptian children. Most of the cases encountered in their study suffered functional renal impairment secondary to severe dehydration or sepsis. Presence of congenital abnormalities of the gastrointestinal tract, heart or urinary tract, increased the possibility of suffering from impaired renal function approximately 9 times. Delays in seeking medical advice increased the risk substantially.

Malnutrition is a common pathological condition which exacerbates cardiovascular morbidity and mortality in CRF patients (*Da Silva et al., 2005 and Brunin et al., 2006A*). The underlying mechanisms in CRF malnutrition have not been completely clarified. Inadequate diet and a state of persistent catabolism play major roles (*Brunini et al.*,

2006A). Also protein metabolism changes with loss of renal function resulting in deterioration of nutritional status (Ivarsen et al., 2001).

Levels of plasma and intracellular amino acids are significant early indicators of protein metabolism and nutritional status assessment (Brunini et al., 2006A and Chuang et al., 2006). Many of the characteristic alterations in the plasma amino acid profile that are observed in chronic end-stage renal disease are already present in mild renal insufficiency. Progressive loss of renal function generally results in increasing abnormalities; these changes in plasma amino acid concentrations were usually linear with reduction in glomerular filtration rate GFR (Laidlaw et al., 1994).

Plasma protein and amino acid concentrations have been reported to be abnormal in patients with chronic renal failure, whether on conservative or regular dialysis treatment (Perfumo et al., 1986, Ceballos et al., 1990, Suliman et al., 1999 and Suliman et al., 2002). These abnormalities may be related to impaired protein and amino acid metabolism, to dietary deficiencies of calories and proteins, or to amino acid and protein losses due to peritoneal dialysis or hemodialysis (Perfumo et al., 1986). Moreover, branched-chain amino acids are moderately decreased only in the advanced stage of renal failure and this may be, at least in part, nutritional in origin (Ceballos et al., 1990). Also increased protein degradation may be the cause of increased plasma concentration of nonessential amino acids in malnourished chronic renal patients (Ivarsen et al., 2001).

Increased cardiovascular mortality and morbidity is well recognized in adults with CRF. The adverse impact of CRF on cardiovascular mortality and morbidity in the young is however even greater with a 500 times higher rate of cardiovascular deaths than a control population. The initiation of vascular damage begins very early during the course of CRF, and involves the vascular endothelium. L-Arginine is the substrate for nitric oxide (NO) synthase and has been shown to increase endothelial function in animal clinical studies models and in of subjects with hypercholesterolemia and coronary artery disease. So Lsupplementation in children with CRF might increase NO bioavailability (Bennett-Richards, et al., 2002A).

Aim of the work

The aim of this work is to

- Detect the abnormalities in plasma amino acids in pediatric patients with chronic renal failure on regular hemodialysis.
- Assess the vascular function in children with chronic renal failure following oral L-arginine supplementation.
- Assess the vascular function in children with chronic renal failure and correlate it with L-arginine aminoacid.

I. Amino Acids

Amino acid structure:

There are twenty amino acids (AA) that are commonly found in proteins. Each amino acid has a similar, yet unique structure. The common AA are known as alpha AA because they have a primary amino group (-NH2) and a carboxylic acid group (-COOH) as substitutes of the alpha carbon atoms (figure 1). Proline is an exception because it has a secondary amino group (-NH-), for uniformity it is also treated as alpha-amino acid (*Osuri*, 2003).

Figure 1: General structure of alpha - amino acid (Osuri, 2003).

Each AA has a different side chain (or R group). The side chains vary greatly in their complexity and properties. The side chain of glycine is simply a hydrogen. The side chain of tryptophan is based on the aromatic, bicyclic indole group (Gorga, 2007).

General properties:

The amino and carboxylic acid groups of AA readily ionize. At a pH (\sim 7.4), the amino groups are protonated and the carboxyl acid groups are in their conjugate base (carboxylate) form, this shows that an AA that can act as an