The Role of Recent MRI Applications in Differentiation of Hepatic Focal Lesions

Essay

Submitted for the partial fulfillment of master degree in Radio-diagnosis

By

Razaz Sheikh Idris Mohammed Elamin M.B.B.,Ch

Supervised by

Prof. Dr. Suzan Baheej Ali

Professor of Radiodiagnosis Faculty of Medicine – Ain Shams University

Dr. Ayman Mohamed Ibrahim

Lecturer of Radiodiagnosis
Faculty of Medicine – Ain Shams University

Faculty of Medicine

Ain Shams University

2015

First and foremost thanks to (**ALLAH**) Who is the Most Beneficial and Most Merciful.

Words are not enough to express my great thanks and deep appreciation to **Prof. Dr. Suzan Baheej Ali,** Professor of Radiodiagnosis, Faculty of Medicine – Ain Shams University, for her keen supervision, generous cooperation, great help and encouragement to finish this work. I really have the honor to complete this work under her supervison.

It is a great pleasure to express my profound gratitude and deep thanks to **Dr. Ayman Mohamed Ibrahim**, Lecturer of Radiodiagnosis, Faculty of Medicine – Ain Shams University, for his effort, comments, ideas, constructive criticism and support throughout this thesis.

Very special thanks to all my **Family** for their support and encouragement throughout this work.

Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iii
Introduction	1
Aim of the Study	4
Chapter (1): Gross and MRI Anatomy of th	e Liver5
Chapter (2): Physics of MRI	16
Chapter (3): Technique of MRI	31
Chapter (4): Interpretation and MRI Finding	ngs 61
Summary	117
References	120
Arabic Summary	

List of Abbreviations

Abbrev. Full term : Magnetic resonance imaging **MRI** : Diffusion-weighted imaging **DWI** : Volumetric interpolated breath-hold examination VIBE **GRE** : Gradient-recalled-echo (GRE) **RARE** : Rapid acquisition with relaxation enhancement **TSE** : Turbo spin echo HASTE : Half-Fourier acquisition single-shot turbo spin echo : Short TI inversion-recovery (STIR) **STIR** \mathbf{DW} : Diffusion-weighted **SNR** : Signal-to-noise ratio CT : Computer tomography SE : Spin-echo SGE : Spoiled gradient echo TR : Repetition time **SPFO** : Super-paramagnetic iron oxides : Ultra small super-paramagnetic iron oxides **USPFO HCC** : Hepatocellular carcinomas Gd : Gadolinium CCC : Cholangio cellular carcinoma DEL : Delayed phase image **FNH** : Focal nodular hyperplasia **ART** : Axial arterial phase image

: Nodular Regenerative Hyperplasia

NRH

List of Tables

Table No.	Title	Page No.
Table (1):	Mechanisms of effect and clinical proposition of contrast agents used in liver MR in examination	naging
Table (2):	The extra-cellular and hepatocyte-sel Gadolinium chelate used in liver examination.	MRI
Table (3):	Super-paramagnetic iron oxide used in MR examination and RES-specific coagent sal100ml in 5% glucose with	ontrast
	minute infusion R1:T1 relaxivity	55

List of Figures

Figure No.	Title	Page No.
Figure (1):	Segmental anatomy	5
Figure (2):	Schematic presentation of the segments	
Figure (3):	On a frontal view of the liver the post located segments 6 and 7 are not visib	•
Figure (4):	Segmental anatomy	9
Figure (5):	LEFT: at the level of the right porta RIGHT: at the level of the splenic vein	
Figure (6):	Hypertrophy of caudate lobe in a with liver cirrhosis. Notice the lobulated right hemiliver	small
Figure (7):	Anterior view of the liver	11
Figure (8):	Plain MR images. On T1 (a) and weighted plain images with the leveins as landmarks are visible	nepatic
Figure (9):	Imaging Landmarks for Segmental Localization	
Figure (10):	T1-weighted noncontrast axial imag lobe (anteroposterior diameter on the para vertebral line): up to 5 cm	he left
Figure (11):	Axial T2 WI showing GB diameter to cm (double arrow) with Widgallbladder wall: 1–3 mm, commoduct (black arrow) less than 8mm	th of on bile
Figure (12):	Coronal image showing Portal diameter up to 1.5 cm	

Figure No.	Title	Page No.
Figure (13):	T2-weighted axial image after the administration of a super parama contrast agent showing right hepatic v	agnetic
Figure (14):	FNH, drawings. T2 fat sat	66
Figure (15):	FNH, large typical MRI findings at 3.	0T 67
Figure (16):	FNH (same patient as shown above gross pathology (another patient)	
Figure (17):	FNH, very bright on T2 and with central scar, drawings. T2 fatsat	
Figure (18):	FNH, very bright on T2 with a dark scar, MRI findings	
Figure (19):	Nodular regenerative hyperplasia aft BOPTA. ral rim can be seen	
Figure (20):	Adenoma, drawings. T2 fatsat	75
Figure (21):	Adenoma, typical MRI findings	76
Figure (22):	Abscess, pyogenic type, drawings	77
Figure (23):	Abscess, pyogenic type, MR in findings at 3.0T.	maging 78
Figure (24):	(Left) GE T1-weighted MR image shround homogeneously hypo intense (Right) TSE STIR T2-weighted MR shows the same lesion as isointense surrounding liver parenchyma	lesion image to the
Figure (25):	Haemangioma, small, drawings	82
Figure (26):	Haemangioma, small, typical MRI fi in a patient with suspected liver metast	•

Figure No.	Title	Page No.
Figure (27):	Haemangioma, multiple, MRI finding	s 85
Figure (28):	Macro-regenerative nodules in Budd-syndrome	
Figure (29):	Dysplastic nodules, cirrhotic drawings. Coronal SSTSE	
Figure (30):	Dysplastic nodules, cirrhotic liver, findings	
Figure (31):	HCC, cirrhosis, large, mosaic, dra SSTSE	
Figure (32):	HCC, cirrhotic liver, large, mosaic ptypical MRI findings	
Figure (33):	HCC, cirrhosis, small, drawings	93
Figure (34):	HCC, cirrhosis, small, typical MRI find	lings 93
Figure (35):	Well-differentiated hepatocellular carci	noma 95
Figure (36):	Poorly differentiated hepatoc carcinoma.	
Figure (37):	HCC, cirrhosis, nodule-in-nodule, draw fat sat	•
Figure (38):	HCC, cirrhotic liver, nodule-in-nodule findings.	
Figure (39):	Carcinoid metastases.	99
Figure (40):	Metastasis, neuroendocrine pancreas t metastasis, drawings	
Figure (41):	Metastasis, neuroendocrine pancreas t metastasis, MRI findings	

Figure No.	Title	Page No.
Figure (42):	Metastasis, carcinoid with hemor	
Figure (43):	Metastasis, carcinoid with hemorrhag findings	
Figure (44):	Metastases, Gastrinoma, multiple drawi	ngs 103
Figure (45):	Metastases, Gastrinoma, multiple, findings	
Figure (46):	Breast carcinoma metastases, drawing	s 104
Figure (47):	Breast carcinoma metastases, MRI find	ings 104
Figure (48):	Melanoma metastases, focal, drawings	s 105
Figure (49):	Melanoma metastases, focal, melanotic findings.	
Figure (50):	Hypo vascular HCC and cav haemangioma after Gd-BOPTA	
Figure (51):	Metastasis, colorectal, drawings	109
Figure (52):	Metastasis, colorectal, MRI findings	109
Figure (53):	Improvement of lesion detection with oxide based contrast- agent (SHU Resovist)	555A;
Figure (54):	Detection of small metastases: Mangafenhanced vs gadolinium-enhanced MR	
Figure (55):	Improvement of lesion detection with specific agent in a patient with breast of	

Figure No.	Title	Page No.
Figure (56):	Unenhanced axial T1-weighted GRI shows the extensive lesion who homogeneous low signal and well-borders.	with a -defined
Figure (57):	Hilar cholangiocarcinoma (CC), drav	wings 115
Figure (58):	Hilar cholangiocarcinoma (CC) findings	

Introduction

The detection and characterization of focal hepatic lesions continues to be a daily challenge in the clinical setting. The noninvasive diagnosis of liver lesions is usually achieved with contrast material—enhanced computed tomography and magnetic resonance (MR) imaging (*Elsayes et al.*, 2005).

The early detection of focal liver lesions, particularly those which are malignant, is of great importance. The resection of liver metastases of some malignancies (including colorectal cancer) has been shown to improve the survival of patients. Almost all focal liver lesions larger than 10 mm are demonstrated with current imaging techniques but the detection of smaller focal liver lesions is still relatively poor. One of the advantages of magnetic resonance imaging (MRI) of the liver is better soft tissue contrast (compared to other radiologic modalities), which allows better detection and characterization of the focal liver lesions in question. Developments in MRI hardware and software and the availability of novel MRI contrast agents have further improved the diagnostic yield of MRI in lesion detection and characterization (*Coenegrachts et al.*, 2009).

Although the primary modalities for liver imaging are ultrasound and computed tomography, recent studies have suggested that MRI is the most sensitive method for detecting small liver metastatic lesions, and MRI is now considered the pre-operative standard method for diagnosis. Two recent developments in MRI sequences for the upper abdomen comprise unenhanced diffusion-weighted imaging and keyhole-based dynamic contrast-enhanced (DWI), (DCE) MRI (4D THRIVE). DWI allows improved detection (b = 10 s/mm(2)) of small (< 10 mm) focal liver lesions in particular, and is useful as a road map sequence. 4D THRIVE improves evaluation of focal liver lesions, providing multiple arterial and venous phases, and allows the calculation of perfusion parameters using pharmacokinetic models. 4D THRIVE has potential benefits in terms of detection, characterization and staging of focal liver lesions and in monitoring therapy (Coenegrachts et al., 2009).

Magnetic resonance (MR) imaging plays an important role in the evaluation of a wide range of benign and malignant focal hepatic lesions. The use of three-dimensional (3D) gradient-recalled-echo (GRE) sequences such as volumetric interpolated breath-hold examination (VIBE) has improved MR imaging by providing dynamic contrast material—enhanced thin-section images with fat saturation and a high signal-to-noise ratio (*Albrecht et al.*, 2008).

This technique demonstrates characteristic enhancement patterns that can be helpful in the diagnosis of various focal hepatic lesions. These enhancement patterns are seen during specific phases of imaging and include arterial phase enhancement, delayed phase enhancement, peripheral washout, ring enhancement, nodule-within-a-nodule enhancement, true central scar, pseudo central scar and pseudo capsule. Familiarity with these enhancement patterns can help in the identification of specific focal lesions of the liver (*Elsayes et al.*, 2005).

Aim of the Study

The aim of the study is to highlight the role of recent MRI applications in differentiation of hepatic focal lesions.