دراسات على بعض الملوثات في مياه الري بترعة السلام و مدى تراكمها في بعض محاصيل الخضر

رسالة مقدمة من رائه حسنى حسن ابونوفل بكالوريوس العلوم التعاونية الزراعية، المعهد العالى للتعاون الزراعي، 1995

للحصول على درجة الماجستيرفى العلوم الزراعية (الزراعة الصحراوية والمناطق المتأثرة بالملوحة)

معهد الدراسات العليا و البحوث للزراعة في المناطق القاحلة كلية الزراعة

جامعة عين شمس

جامعة عين شمس كلية الزراعة

رسالة ماجستير

أسم الطالبـــة: رانه حسنى حسن ابونوفل

عنوان الرسالة: دراسات على بعض ملوثات مياه ترعة السلام و مدى تراكمها في بعض محاصيل الخضر

اسم الدرجة: ماجستير في العلوم الزراعية تحت إشراف

د. ممدوح محمد فوزی

أستاذ الخضر المتفرغ، قسم البساتين، كلية الزراعة، جامعة عين شمس (المشرف الرئيسي)

د. اسامه البحيري

أستاذ الخضر، قسم البساتين، كلية زراعة، جامعة عين شمس

د. رهام كامل ابراهيم أحمد بدوى

أستاذ باحث مساعدً، رئيس وحدة تلوث البيئة ، مركز بحوث الصحراء

تاريخ التسجيل: 2011/10/17

الدراسات العليا

أجيزت الرسالة بتاريخ

ختم الإجازة

2015/ /

موافقة مجلس الجامعة

موافقة مجلس الكلية

2015/ /

ABSTRACT

Rana Hosny Hassan Abou-Noufal. Studies of some Pollutants in Irrigation Water of El-Salam Canal and its Accumulation in some Vegetable Crops. Published M.Sc. Thesis, Agriculture Development in Dry Areas, Arid Land Agricultural Graduate Studies and Research Institute. Faculty of Agriculture, Ain Shams University, 2015

In Egypt, the major challenge facing the sustainable requirements for agricultural development is limited water resources. Water supply shortage at the end of irrigation network is a common problem in the north of Sinai, Egypt. El-Salam canal project was initiated in 1987 to irrigate 650000 hectares of the newly reclaimed areas in the west and east Suez Canal by mixed water from River Nile and both Hadous and El Serw Drains by (1:1). These combined irrigation water has creates both opportunities and problems in agricultural sector.

The purpose of this study was to determine the quality of El-Salam irrigation water chemically, biologically and microbial contamination in collected water samples through summer 2013 and winter 2014. Quantify the content of some metals in some vegetables and their rhizosphere soil which irrigated by El-Salam canal through both seasons. And investigate the metal content, the healthy quotient and the daily intake amount of Cu, Zn, Mn and Co elements in edible parts for 19 types of vegetables irrigated by combined water of El-Salam Canal after mixing with El-Serw and Bahr Hadous drains. Eight selected sites along 86-km of the first stage of El-Salam canal "River Nile at Damietta branch, before and after mixing with El-Serw, Bahr Hadous drains and themselves and the west of Qantara" were studied for both seasons. It was noticed that water salinity increases from west to east of El-Salam canal especially after mixing with both drains mentioned before. Concentration of nine metal elements Al, Co, Cr, Cu, Fe, Ni, Pb, Mn and Zn were measured in collected water

samples. Concentrations of these elements in the current study were mostly less than the permissible limits except for Mn in Bahr Hadous drain and after mixing with it. Concentrations of Cu, Zn, Mn and Co were studied in tested vegetable plants which irrigated with mixed water it was found a significant increasing than those of Nile water irrigated soil. Comparing El-Serw and Bahr Hadous drains with guidelines of FAO, 1997 and Egyptian Law 4/1994 (revised in 2011), it was found that they are a source of contamination and violation. Brevity, Gradate the health risks in the edible parts of vegetable plants from root to leafy then fruiting parts. Thus human consuming these cultivated vegetables ingest significant amount of these metals and thus can cause serious health problem.

Key words: Pollutants, El-Salam Canal irrigation water, Vegetable crops

ACKNOWLEDGMENT

First thanks to God, I would like to express my deep appreciation to **Dr. Mamdouh Mohamed Fawzy Abdallah** Prof. Emeritus of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University for his helpful investigation and continuous supervision with valuable discussions and continuous advises during this work.

I would like to express my hearty thanks to **Dr. Usama Ahmed El-Behairy** Prof. of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University for his supervision and continuous help in this work.

I wish to express my thanks to **Dr. Reham Kamel Ibrahim Ahmed Badawy** Assist. Prof. of Researcher and Head of Environmental Pollution Unit, Department of Environment and Range management, Desert Research Center for her supervision and encouragement support that made this work possible.

I would like to express my thanks to **Dr. Mohamed El-Shinawy** Prof. of Vegetable Crops, Head of Department of Horticulture, Faculty of Agriculture, Ain Shams University for his help in laboratory works and continuous advises during this work.

I would like to express my thanks to **Dr. Mona Metwaly Hamada** Researcher of Vegetable Crops, Department of Environment and Range management, Desert Research Center for her supervision and encouragement support that made this work possible.

Many thanks to all stuff members of Desert Research Center and Arid and Agricultural Graduate Studies and Research Institute for their cooperation that helped me in this work.

CONTENTS

	Page
LIST OF TABLES	
I. INTRODUCTION	1
II. REVIWE OF LITERATURE	3
2.1. Environmental studies to El-Salam canal	3
2.2. Waste water Irrigation	7
2.3. Soil pollution	9
2.4. Pollution of heavy metals in vegetable crops	10
2.5. Risk associated with the consumption of metal	15
contaminated vegetable crops:	13
III. MATERIALS AND METHODS	20
3.1. Site description	20
3.2. Field sampling collection:	20
3.2.1. Water sampling:	20
3.2.2. Plant and soil sampling:	22
3.3. Water analysis:	23
3.4. Soil analysis:	23
3.5. Plant analysis:	24
3.6. Statistical analysis:	24
3.7. Data analysis:	25
3.7.1. Daily intake of metals:	25
3.7.2. Health Risk Index:	25
IV. RESULTS AND DISCUSSION	26
4.1. Water quality and its suitability for irrigation	26
4.1.1. Chemical constituents and water types	26
4.1.2. Heavy metals and trace elements contents in	
irrigation water	30
4.1.3. Microbial analysis of water samples	32
4.2. Heavy metal and trace elements concentration in	
vegetable	36

	Page
4.2.1. Zinc content	36
4.2.2. Copper content	39
4.2.3. Mn content	40
4.2.4. Co content	40
4.3. Soil pollution by trace elements and heavy metals	41
4.3.1. Soil characteristics	41
4.3.2. Effect of pant species, sites and their interaction	
effects in Cu, Zn, Mn & Co available content in	43
rhizosphere soil:	
4.4. Zinc, Copper, Manganese and Cobalt content in	
edible parts of studied vegetables	47
4.5. Daily intake of Cu, Zn, Mn and Co metals	50
4.6. Health risks through food chain	53
V. SUMMARY	57
VI. REFERENCES	64
ARABIC SUMMARY	

LIST OF TABLES

No		Pages
1.	Longitude and latitude and description of collected	
	water, soil and plants along the first stage 86-km of El-	
	Salam canal	21
2.	Plant samples collected from soil irrigated with El-	
	Salam combined water after mixing with El-Serw and	
	Bahr Hadous drains	22
3.	Background values of copper, zinc, manganese &	
	cobalt guide limit in vegetable plants:	23
4A	Chemical analysis, Total dissolved salts (TDS) of	23
	irrigation water for studied samples of El-Salam canal	
	during summer (2013).	27
4B	Chemical analysis, total dissolved solids (TDS) of	
	irrigation water for El-Salam Canal through 86-km	
	south canal Suez during winter (2014).	28
5	Heavy metals and trace elements concentration (ppm)	20
	analysis of irrigation water for El-Salam canal through	
	86-km west canal Suez during summer (2013) and	
	winter (2014)	31
6.	Total viable bacterial counts (TVBCs) cfu/ml, the most	31
	probable number (MPN) of total coliform (TC) /100 ml	
	water, TSI, Biological Oxygen Demand (BOD) and	
	Chemical Oxygen Demand (COD) of irrigation water	
	for El-Salam Canal through 86-km south canal Suez	
	during summer (2013) and winter (2014).	33
	-	33

No		Pages
7A	Effect of different studied plant species as a main	
	factor on accumulation in shoot and root for copper	
	(Cu), zinc (Zn), (Mn) & cobalt (Co) metals per (ppm)	
	during summer (2013) and winter (2014)	35
7B	Effect of different studied sites as a sub-main factor	
	along El-Salam Canal on accumulation in shoot and	
	root for copper (Cu), zinc (Zn), (Mn) & cobalt (Co)	
	metals per ppm during summer (2013) and winter	
	(2014)	36
7C.	Interaction effect between sites and vegetable plant	
	species factors on copper (Cu), zinc (Zn), (Mn) &	
	cobalt (Co) metals accumulations in vegetables grown	
	in studied sites along El-Salam Canal during summer	
	(2013) and winter (2014)	37
8a.	Chemical analysis, pH, EC, Ca2Co3 (%), cations &	
	anions (meq/L) and mechanical analysis of soil through	
	86 km of El-Salam Canal during summer (2013) and	
	winter (2014):	41
8b.	Effect of vegetable plant species as a main factor on	
	copper (Cu), zinc (Zn), (Mn) & cobalt (Co) metals for	
	available rhizosphere soil content in studied soil sites	
	on vegetables species during summer (2013) and	
	winter (2014)	41
9.	Effect of different studied sites as sub-main factor on	
	copper (Cu), zinc (Zn), (Mn) & cobalt (Co) metals for	
	available rhizosphere soil content in studied soil sites	
	during summer (2013) and winter (2014)	44

No		Pages
10.	Interaction effect between sites and vegetable plant	
	species factors on copper (Cu), zinc (Zn), (Mn) &	
	cobalt (Co) metals accumulations grown in studied	
	sites along El-Salam Canal during summer (2013) and	
	winter (2014)	45
11.	Edible parts metal concentrations (ppm) of Zn, Mn, Cu	
	and Co in 19 vegetables grown in Sahl El-Hessania	
	irrigated by El-Salam Canal irrigation water after	
	mixing with El-Serw and Hadous drains through	47
	summer (2013) and winter (2014)	
12.	Estimated dietary intake (EDI) mg/(kg day) of Zn and	
	Mn for adults and children via consumption in 19	
	vegetables grown in Sahl El-Hessania irrigated from	
	Salam Canal after mixing with El-Serw and Hadous	
	drains through summer (2013) and winter (2014)	51
13.	Estimated dietary intake (EDI) mg/(kg day) of Cu and	
	Co for adults and children via consumption in 19	
	vegetables grown in Sahl El-Hessania irrigated from	
	Salam Canal after mixing with El-Serw and Hadous	
	drains summer (2013) and winter (2014)	52
14.	Health quotient risk (HQ) mg/(kg day) of Zn and Mn	
	for adults and children via consumption in 19	
	vegetables grown in Sahl El-Hessania irrigated from	
	Salam Canal after mixing with El-Serw and Hadous	
	drains summer (2013) and winter (2014)	54
15.	Health quotient risk (HQ) mg/(kg day) of Cu and Co	
	for adults and children via consumption in 19	
	vegetables grown in Sahl El-Hessania irrigated by El-	
	Salam Canal after mixing with El-Serw and Hadous	55
	drains through summer (2013) and winter (2014)	

LIST OF APPENDICES

No		Pages
1a	Chemical Oxygen Demand (COD) and Biological	
	Oxygen Demand (BOD) for studied water samples	
	through summer season (2014).	77
1b	Chemical Oxygen Demand (COD) and Biological	
	Oxygen Demand (BOD) for studied water samples	
	through winter season (2014).	77
2.	Effect of different studied plant species as a main	
	factor on accumulation in shoot and root for copper	
	(Cu), zinc (Zn), (Mn) & cobalt (Co) metals per (ppm)	78
	during summer 2013	
3.	Effect of different studied sites as a sub-main factor	
	along El-Salam Canal on accumulation in shoot and	
	root for copper (Cu), zinc (Zn), (Mn) & cobalt (Co)	
	metals per ppm during summer 2013 and winter 2014	79
4.	Effect of vegetable plant species as a main factor on	
	copper (Cu), zinc (Zn), (Mn) & cobalt (Co) metals for	
	available rhizosphere soil content in studied soil sites	
	on vegetables species during summer 2013 and winter	
	2014	80
5.	Effect of different studied sites as sub-main factor on	
	copper (Cu), zinc (Zn), (Mn) & cobalt (Co) metals for	
	available rhizosphere soil content in studied soil sites	
	during summer 2013 and winter 2014.	81
6.	Edible parts metal concentrations (ppm) of Zn in 19	
	vegetables grown in Sahl El-Hessania irrigated by El-	
	Salam Canal irrigation water after mixing with El-	
	Serw and Hadous drains through summer (2013) and	
	winter (2014).	82