Effect of Sevelamer on Bone Profile in High Flux Regular Haemodialysis Patients

Thesis

Submitted for partial fulfillment of the master degree in Nephrology

By:

Emad Mohamed Koth Abu-Elyazid

(M. B., B.Ch)

Diploma Internal Medicine
Faculty of Medicine-Ain Shams University

Supervised by

Prof. Dr. Yasser Suliman Ahmed

Professor of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University

Prof. Dr. Mona Hosny Abd El-salam

Professor of internal medicine and Nephrology Faculty of Medicine, Ain Shams University

Dr. Cherry Reda Kamel

Lecturer of internal medicine and Nephrology Faculty of Medicine, Ain shams University

> Faculty of Medicine Ain Shams University 2015

سورة البقرة الآية: ٣٢

Acknowledgement

First and foremost, praise and thanks to **Allah** who guides us throughout the life.

I would like to express my deepest gratitude and thanks to **Prof. Or. Yasser Suliman Ahmed,** Professor of internal medicine and Nephrology, Faculty of Medicine, Ain Shams University for his kind continuous encouragement and great support throughout the work. It was a great honor to work under his meticulous supervision.

Also, I am deeply grateful to **Dr. Mona Hosny Abd El Salam**, Professor of Internal Medicine and Nephrology, Faculty of Medicine, Ain Shams University for her great and valuable help, close supervision and continuous advices.

I am also greatly indebted to **Dr. Cherry Reda Kamel** Lecturer of Internal Medicine and Nephrology,

Faculty of Medicine, Ain Shams University for her valuable help and great support, she guided me towards the best and did big effort to emerge this work to the light.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Emad Mohamed Koth Abu-Elyazid

Contents

List of Abbreviations	i
List of TablesList of Figuers	ii iii
Introduction and Aim of the Work	1
Review of Literature	3
Hemodialysis	4
Metabolic Bone Disease	25
Phosphate Binders	40
Patient and Methods	55
Results	65
Discussion	82
Summary	90
Conclusions	92
Recommendation	93
References	94
Arabic Summary	

List of Abbreviations

25-OHD : 25-hydroxyvitamin D

ABD : Adynamic bone disease

ALP : Alkaline phosphatase

BMC : Bone mineral content

BMD : Bone mineral density

BSA : Body surface area

CI : Confidence interval

CKD : Chronic kidney disease

Da : Dalton

DCOR : Dialysis Clinical Outcomes Revisited

DOPPS : Dialysis Outcomes and Practice Patterns

Study

ESKD : End stage kidney disease

FGF : Fibroblast growth factor

GH : Growth hormone

HD : Hemodialysis

HDF : High-efficiency haemodiafiltration

kD : Kilodalton

KDIGO : Kidney Disease: Improving Global

Outcomes

LMWPs : Low-molecular weight proteins

LPS : Lipopolysaccharide

MBD : Mineral and bone disorder

MW : Molecular weight

NCDS : National Cooperative Dialysis Study

List of Abbreviations (Cont.)

PCR : Protein catabolic rate

PTH : Parathyroid hormone

QCT : Quantitative computed tomography

SEN : Spanish Society of Nephrology

spKt/V : Single pool Kt/V

TACurea : Time-averaged concentration of urea

tHcy : Total homocysteine

UKM : Urea kinetic model

URR : Urea reduction rate

VC : Vascular calcification

VDR : Vitamin D Receptor

Wnt : Wingless-int

List of tables

Table	Title	Page
1	Comparison of Years on dialysis among	69
	studied groups	
2	Comparison of Body mass index among	69
	studied groups	
3	Comparison of Calcium before treatment	69
	among studied groups	
4	Comparison of Calcium after treatment	70
	among studied groups	
5	Comparison of Calcium before and after	70
	treatment among studied groups	
6	Comparison of Phosphorus before	70
	treatment among studied groups	
7	Comparison of Phosphorus after	71
	treatment among studied groups	
8	Comparison of Phosphorus before and	71
	after treatment among studied groups	
9	Comparison of Ca/Ph before treatment	71
	among studied groups	
10	Comparison of Ca/Ph after treatment	72
	among studied groups	
11	Comparison of Calcium/Phosphorus	72
	before and after treatment among studied	
	groups	
12	Comparison of Pre-session urea before	72
	treatment among studied groups	
13	Comparison of Pre-session urea after	73
	treatment among studied groups	
14	Comparison of Pre-Session urea before	73
	and after treatment among studied	
	groups	

List of tables (Cont.)

Table	Title	Page
15	Comparison of Post-session urea before	73
	treatment among studied groups	
16	Comparison of Post-session urea after	74
	treatment among studied groups	
17	Comparison of Post-Session urea before	74
	and after treatment among studied	
	groups	
18	Comparison of Pre-session creatinine	74
	before treatment among studied groups	
19	Comparison of Pre-session creatinine	75
	after treatment among studied groups	
20	Comparison of Pre-session creatinine	75
	before and after treatment among studied	
	groups	
21	Comparison of Post-session creatinine	75
	before treatment among studied groups	
22	Comparison of Post-session creatinine	67
	after treatment among studied groups	
23	Comparison of Post-Session creatinine	67
	before and after treatment among studied	
	groups	
24	Comparison of URR (pre study) before	67
	treatment among studied groups	
25	Comparison of URR (post study) among	77
0.5	studied groups	
26	Comparison of URR before and after	77
25	treatment among studied groups	
27	Comparison of kt/v (pre study) before	77
•	treatment among studied groups	- 0
28	Comparison of k/vt (post study) among	78
	studied groups	

List of tables (Cont.)

Table	Title	Paga
		Page
29	Comparison of Kt/V before and after	78
20	treatment among studied groups	=0
30	Comparison of Albumin before	78
	treatment among studied groups	
31	Comparison of Albumin after treatment	79
	among studied groups	
32	Comparison of Albumin before and after	79
	treatment among studied groups	
33	Comparison of Alkaline phosphatase	78
	before treatment among studied groups	
34	Comparison of Alkaline phosphatase	80
	after treatment among studied groups	
35	Comparison of Alkaline phosphatase	80
	before and after treatment among studied	
	groups	
36	Comparison of Parathormone before	80
	treatment among studied groups	
37	Comparison of Parathormone after	81
	treatment among studied groups	
38	Comparison of Parathormone before and	81
	after treatment among studied groups	
39	Comparison of Cholesterol among	81
	studied groups	
40	Comparison of Triglycerides among	82
	studied groups	
41	Comparison of HDL among studied	82
	groups	
42	Comparison of LDL among studied	82
	groups	~ -
43	Comparison of HB% among studied	83
.5	groups	05
	Prombo	

List of tables (Cont.)

Table	Title	Page
44	Comparison of HCT% among studied	83
	groups	
45	Comparison of CRP among studied	83
	groups	
46	Comparison of Epo/week among studied	84
	groups	
47	Comparison of Iron among studied	84
	groups	
48	Comparison of Vit D /week among	84
	studied groups	
49	Comparison of Calcium/week among	85
	studied groups	

List of Figures

Fig.	Title	Page
1	The interrelated nature of biochemical abnormalities, bone disease, and extraskeletal calcification in chronic kidney disease-mineral and bone disorder	26
2	Estimated urea distribution volume V in male dialysis patients	60
3	Estimated V in female dialysis patients	61
4	Relationship between nominal blood flow rate (QB) and blood water urea clearance (Ktotw) as a function of dialyzer	62
5	Actual relationship between fractional urea clearance (Kt/V) and urea reduction ratio (URR), taking into account urea generation and the effects of volume contraction. To use, start with the URR on the vertical axis. Move right until you intersect with the proper UF/W line, then dropdown to the horizontal axis for the Kt/V (http://www.hdcn.com)	63

Introduction

Standard hemodialysis is a far from ideal treatment for uremia since the morbidity and mortality of patients on hemodialysis are still significantly higher than those of non-hemodialysed subjects with similar demographic characteristics. Because it has been suggested that the cause could lie in the inadequate removal of "middle molecules" by standard hemodialysis, two alternative treatments have been proposed: high-efficiency hemodialysis and high-flux hemodialysis (*Manzoni et al.*, 2009).

Currently, high-flux hemodialysis is the most common mode of dialysis therapy worldwide. Its steadily increasing use is largely based on the desire to reduce the excessively high morbidity and mortality of end-stage renal disease patients maintained on conventional dialysis (low-flux, mostly cellulosic membranes) by offering better biocompatibility and enhanced removal of uremic toxins (*Schiffl*, 2011).

High-flux dialysis membranes are more efficient in removal of intact PTH and they might help in minimizing the consequences of bone disease associated with hyperparathyroidism in patients with ESRD) (*Makar et al.*,2010).

It was also suggested that high flux dialysis improves plasma lipoprotein profiles, especially lowering plasma triglyceride concentrations, and also increases HDL cholesterol. (*Goldberg et al.*,1996).

The major disadvantage of high-flux hemodialysis relates to the use of dialysis fluid, which is commonly not pure and may endanger patients treated with high-flux hemodialysis. Endotoxin fragments and other bacterial

substances derived from bacteriologically contaminated dialysis fluid may, even at bacterial counts or endotoxin concentrations within the limits of accepted standards of dialysis fluid purity, enter from the dialysate into the patient's blood either by convective transfer (backfiltration) or by movement down the concentration gradient (backdiffusion) (Schiffl and Lang, 2010).

Sevelamer hydrochloride, as a phosphate binder that contains neither aluminum nor calcium, is expected to improve the prognosis of dialysis patients. However, sevelamer hydrochloride has been reported to lower the serum bicarbonate level (*Oka et al.*, 2007).

Oka et al. (2008) reported that sevelamer hydrochloride exacerbated metabolic acidosis in hemodialysis patients, depending on the dosage.

De Santo et al. (2006) reported that a 24-week sevelamer administration caused a statistically significant (p<0.05) reduction (0.8g/dL) in serum albumin concentration, without affecting iPTH. And, **Ohno et al** (2009) reported sevelamer to reduce the serum urate concentration in maintenance hemodialysis patients

Inoue et al. (2007) reported that Sevelamer was useful for reducing the serum calcium level and calcium x phosphate product.

Akatsuka et al. (2008) recommended the use of sevelamer hydrochloride in combination with calcium carbonate in hemodialysis patients.

Yet, it is important to mention that sevelamer hydrochloride binds bacterial endotoxin in the intestinal tract, leading to lower circulating endotoxin levels, and offering a novel anti-inflammatory mechanism (*Sun et al.*, 2009).

Introduction and Aim of the Work

Aim of the Work

Study of the effect of sevelamer on bone profile in high flux regular haemodialysis patients.

Hemodialysis

Patients with end stage kidney disease (ESKD) are progressively increasing and the demand for renal replacement therapies is expanding (*Lysaght*, 2002). Hemodialysis and peritoneal dialysis represent reliable forms of therapy leading to significant and longlasting survival times (*Ledebo and Ronco*, 2008). Nevertheless, hemodialysis is still performed intermittently leading to a significant degree of unphysiology due to fluid and electrolyte shifts during intra and interdialytic periods.

I. Solute Removal by Dialysis:

Uremia could theoretically be treated by reducing solute production, but this is not part of current practice. High protein intake increases the production of many solutes, including various guanidines, indoles, and phenols. Patients with kidney failure tend to reduce their protein intake spontaneously, and before dialysis became available, physicians found that marked protein restriction relieved uremic symptoms (*Kopple et al.*, 2000).

Protein restriction can have ill effects, however, and it is now recommended that patients undergoing dialysis receive 1.2 g of protein per kilogram of body weight per day, which is nearly the amount provided by an average diet in the United States. Since a number of the best-known uremic solutes-such as aliphatic amines, D-amino acids, methylguanidine, hippurate, and many indoles and phenols-are produced entirely or in part by gut bacteria, the use of sorbents to reduce the load of such solutes has been considered but has not been systematically studied.