Clinical Utility of RASSF1A Gene Methylation Assayed By Methylation Specific Polymerase Chain Reaction In Ovarian Cancer Patients

Thesis

Submitted For Partial Fulfillment of Master Degree in Clinical Pathology

By

Al Shimaa Fahem Ali Omara

M.B., B.CH Faculty of Medicine - Ain Shams University

Supervised by

Professor/ Manal Mohamed Abd Alziz

Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Doctor / Amira Ibrahim Hamed

Assistant Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Doctor/ Ramy Mohamed Mahmoud

Lecturer of Clinical Pathology Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2018

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Professor**/ **Manal Mohamed Abd Alziz**, Professor of Clinical Pathology Faculty of Medicine - Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Doctor / Amira Ibrahim Hamed**, Assistant Professor of Clinical Pathology Faculty of Medicine-Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Doctor/ Ramy Mohamed**Mahmoud, Lecturer of Clinical Pathology Faculty of

Medicine-Ain Shams University, for his great help, active
participation and guidance.

Al Shimaa Fahem Ali Omara

List of Contents

Title	Page No.
List of Tables	1
List of Figures	3
List of Abbreviations	4
Introduction	1
Aim of the Work	10
Review of Literature	
Ovarian Cancer	11
Diagnosis of Ovarian Cancer	23
 Ras Associated Domain Family Member 1 	A RASSF1A37
Subjects and Methods	50
Results	64
Discussion	73
Summary & Conclusion	80
Recommendations	83
References	84
Arabic Summary	

List of Tables

Table No.	Title Page I	Vo.
Table (1):	The FIGO Staging System 2014 and TNM	
m.11 (a)	Classification of Epithelial OC	21
Table (2):	Bisulfite modification C: Cytosine, G:	
(D-1-1- (O)	Guanosine, U: Uracil.	
Table (3):	Bisulfite reaction components.	
Table (4):	Bisulfite reaction in thermal cycler	
Table (5):	Amplification reaction composition	
Table (6):	Steps in thermal-cycler.	60
Table (7):	Descriptive and comparative statistics of	
	the demographic and laboratory data in the	66
Table (8):	three studied groups	00
Table (6):	Comparison between each two groups as regard CA125	67
Table (9):	Performance characteristics of CA125 at	07
Table (b).	Cut off Level (106 IU/mL)	68
Table (10):	Comparison between each two groups as	00
1 abic (10).	regard RASSF1A Gene Methylation	68
Table (11):	Descriptive and comparative statistics	00
14616 (11)	between RASSF1A gene methylated group	
	and unmethylated group among all studied	
	subjects regarding different parameters	69
Table (12):	Comparison between RASSF1A gene	
` ,	methylated and unmethylated groups	
	regarding CA125 serum level among each	
	group I & group II	70
Table (13):	Comparison between RASSF1A gene	
	methylated and unmethylated subjects in	
	group I regarding different studied	
	parameters	71
Table (14):	Comparison between RASSF1A gene	
	methylated and unmethylated subjects	
	regarding different stages of OC among	
	Group I	72

List of Cables Cont...

Table No.	Title			Page N	10.
Table (15):	Comparison between each 2 stage of OC (Group I) regarding CA125 Wilcoxon Rank Sum Test				72
Table (16):	Multi-regression predictors of ovari	analysis	to	identifiy	72

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Hormonal factors in OC	13
Figure (2):	Inflammatory process in OC	15
Figure (3):	Early tumor progression within	
9	fallopian tube and the resultant a	
	profile	
Figure (4):	The epigenetic effects found in OC, or	ncomir
3	is a form of miRNA associated with ca	
Figure (5):	Histone modification	39
Figure (6):	The RASSF1 gene locus and	
G , ,	transcripts. RASSF1 isoforms	are
	generated by differential promoter	usage
	(arrows) and alternative splicing	O
Figure (7):	The domain structures of the A isofo	
3	the RASSF family of proteins	42
Figure (8):	Bisulfite modification steps.	
Figure (9):	Gel electrophoresis for RASSF2A	
8 - (-)	methylation.	-
Figure (10):	ROC analysis of CA125.	

List of Abbreviations

Full term Abb. AFP......Alpha-fetoprotein ARID1A.....AT-rich interactive domain 1A BRCA1.....Breast cancer 1 BRCA2..... Breast cancer 2 CA 19-9..... Cancer antigen 19-9 CA125 Cancer antigen 125 CDKN2A...... Cyclin-dependent kinase inhibitor 2A CEA..... Carcinoembryonic antigen CG......Cytosine-guanine CICs.....Cortical inclusion cysts CLIA Chemiluminescent immunoassay COBRA...... Combined bisulfite restriction analysis *CpG...... Cytosine phosphodinucleotides guanine* CT......Computerised topography DNA Deoxynucleic acid DNMTs.....DNA methyltransferases dNTP Deoxynucleoside triphosphates E2..... Estradiol ECLIA..... Electrochemiluminescence immunoassay ELISA..... Enzyme-linked immunosorbent assay EOC Epithelial ovarian cancer EORTC.....European Organization for Research and Treatment of Cancer ERBB2..... Erythroblastic leukemia viraloncogene homologue 2 FDA...... Food and Drug Association FH.BC..... Family history of breast cancer. FH.OC..... Family history of ovarian cancer.

List of Abbreviations Cont...

Full term Abb. FSH......Follicle-stimulating hormone HBOC Hereditary breast and ovarian cancer HE4..... Human epididymis tissue protein E4 HGSCsHigh-grade serous carcinomas HMTs..... Histone methyltransferases HNPCC...... Heritable non-polyposis colorectal cancer HS...... High significant ILs..... Interleukins IQR Inter-quartile range KRAS Kirsten rat sarcoma 2 LH.....Luteinising hormone M11......Murin11 miRNAs Micro RNA MMR..... Mismatch repair MRI...... Magnetic resonance imaging MSP Methylation-specific polymerase NPC Nasopharyngeal carcinoma NPV...... Negative predictive value NS...... Non significant. OCPs..... Oral contraceptive pills OEC Ovarian epithelial carcinoma OR..... Odd's ratio OSE.....Ovarian surface epithelium P53......Protein53 PIK3CA......Phosphatidylinositol 3-kinase catalytic alpha PTENPhosphatase and tensin homologue RA Ras associated Ras.....Rat sarcoma

List of Abbreviations Cont...

Introduction

varian cancer is the leading cause of gynaecologic cancer death, although it constitutes only 3% of all female cancers worldwide (Hennessy et al., 2009). Despite availability of screening measures, such as transvaginal ultrasound, cancer antigen 125 (CA125) or a combination of both modalities, mortality rates remain high due to the highly heterogeneous nature of ovarian cancer (Chu and Rubin, 2006 and American Cancer Society, 2012).

Ovarian epithelial carcinoma (OEC) is the most common ovarian malignancy worldwide, with substantial histopathological heterogeneity. According to World Health Organization (WHO) classification scheme (2003), the most common histologic subtype is serous ovarian carcinoma (59%), while other subtypes include endometrioid (15%), clear cell (5%), transitional (8%), mucinous (9%), and undifferentiated (5%) subtypes (Leitzmann et al., 2009).

The widely used "gold standard" tumor biomarker CA125, a high molecular weight glycoprotein, has limited sensitivity between 50% and 60% (Sreeja et al., 2012). Moreover, CA125 is elevated in some benign conditions, its levels exhibit fluctuations associated with menstrual cycle and pregnancy, all of which limit its specificity. As a result, CA125 assay has not been recommended in screening guidelines for the general population (Toss et al., 2015).

It is recognized that both genetic and epigenetic events play a role in the development of ovarian cancer (Wei et al., **2006).** Epigenetic changes are changes in gene expression, with no changes in DNA sequence, which are inheritable through mitosis or meiosis and lead to phenotypic changes (Chong et al., 2004).

DNA methylation comprises the best-known epigenetic mechanism associated with gene expression. DNA methylation occurs on the cytosine residues of CG dinucleotides (also designated as CpG). Enzymes known as DNA methyltransferases (DNMTs) catalyse the addition of a methyl group to the cytosine ring to form methyl cytosine, employing S-adenosylmethionine as a methyl donor (Herman et al., 2003).

The aberrant methylation of CpG islands in gene promoters has been correlated with a loss of gene expression, and it appears that DNA methylation provides an alternative pathway to gene deletion or mutation for the loss of tumor suppressor gene function (Toss et al., 2015).

The RASSF family of tumor suppressor genes encode Ras superfamily effector proteins that, among their functions, mediate some of the growth inhibitory functions. Several members of this family are inactivated by promoter DNA hypermethylation; and, hence, inactivation of RASSF1 has been described in a growing number of tumor types (Baylin and Chen, 2005).

Therefore, a study on the molecular mechanism underlying ovarian cancer progression, including a search for methylation status, is important for early diagnosis and effective therapy for ovarian cancer. There are limited data about the genetic cause in ovarian cancer (Tcherkassova et al., *2011)*.

AIM OF THE WORK

The aim of this study is to investigate the association between methylation of RASSF1A and ovarian cancer and correlate results with the clinicopathological features of the disease, as well as with the tumor marker CA 125.

Chapter 1

OVARIAN CANCER

I) Epidemiology of Ovarian Cancer:

Ithough ovarian cancer has a life time risk of only 1.3% in the general population and accounts for only 1.3% of all new cancers and representing 3.8 % of all females' malignancies, it is the fifth-leading cause of cancer-related deaths in women (American Cancer Society, 2016). According to National Institutes of Health (2016) there are more than 22,200 new cases of ovarian cancer and more than 14,200 deaths from ovarian cancer in the United States (National Institutes of Health, 2016). According to the National Population-Based Cancer Registry Program in Egypt (2008 –2011); ovarian cancer is the fourth most common cancer among females with crude and age standardized incidence rates (4.6 and 6.3) per 100,000 population, respectively (Ibrahim et al., 2014).

II) Classification of Ovarian Cancer:

The World Health Organization Histological Classification for ovarian tumors separates ovarian neoplasms according to the most probable tissue of origin: surface epithelial (65%), germ cell (15%), sex cord-stromal (10%), metastases (5%) and miscellaneous. Surface epithelial tumors are further classified by cell type (serous, mucinous,