RESPIRATORY VIRAL INFECTIONS IN NEONATES SUSPECTED FOR BACTERIAL SEPSIS

Thesis

Submitted for the partial fulfillment of MD degree in Pediatrics

By

Tayseer Moustafa Mahmoud Mohamed

M.B.B.Ch, 2007 MSc. In Paediatrics (2013) Faculty of Medicine - Ain-Shams University

Under Supervision of

Prof. Zeinab Anwar El-kabbany

Professor of Pediatrics Faculty of Medicine, Ain Shams University

Prof. Tarek Mohey El-Gammasy

Professor of Pediatrics Faculty of Medicine, Ain Shams University

Prof. Maha Hassan Mohamed

Professor of Pediatrics Faculty of Medicine - Ain Shams University

Assist Prof. Wafaa Khalil Zaki

Assistant Professor of Microbiology and Immunology Faculty of Medicine - Ain Shams University

Dr. Yasmin Aly Farid

Lecturer of Pediatrics Faculty of Medicine - Ain Shams University

Faculty of Medicine - Ain Shams University 2018

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Zeinab Anwar El-kabbany**, Professor of Pediatrics - Faculty of Medicine- Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Tarek Mohey El-Gammasy**, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Prof.** Maha Hassan Mohamed, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her great help, active participation and guidance.

I wish to introduce my deep respect and thanks to **Dr. Wafaa Khalil Zaki**, Assistant Professor of Microbiology and Immunology, Faculty of Medicine, Ain Shams University, for her kindness, supervision and cooperation in this work.

My deepest appreciation goes to **Dr. Vasmin Aly Farid**, Lecturer of Pediatrics, Faculty of Medicine, Ain Shams University, for her valuable suggestions, advice, efforts and for allowing me a free access to her precious time.

Dedication

This work is dedicated to

Souls of

Mr/ Abdel Salam Osman Abdel Salam (1958-2014)

Dr/ Marwan Nazeh Emera (1992-2017)

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iv
List of Figures	vii
Introduction	1
Aim of the Work	3
Review of Literature	
Neonatal Sepsis	4
Molecular Basis for Diagnosis of Respiratory Infections	
Respiratory Viruses in Neonates	23
Patients and Methods	
Results	74
Discussion	97
Summary	111
Conclusion	114
Recommendations	115
References	116
Arabic Summary	

List of Abbreviations

Abb.	Full term
AAP	American Academy of Pediatrics
	Alanine aminotrasnferase
	Acute otitis media
	Acute respiratory distress syndrome
	Aspartate aminotransferase
	Bronchoalveolar lavage
	Base excess, base deficit
	.Blood urea nitrogen
BW	
C	_
CBGs	.Capillary blood gases
<i>CD</i>	.Cluster of differentiation
<i>CDC</i>	.The centers for disease control
<i>CF</i>	.Cystic fibrosis
<i>CHD</i>	.Congenital heart disease
CI	.Confidence interval
<i>CLD</i>	.Chronic lung disease
<i>CNS</i>	.Central nervous system
<i>CONS</i>	.Coagulse-negative staphylococcus
<i>CPAP</i>	.Continuous positive airway pressure
<i>CRP</i>	.C-reactive protein
<i>CSF</i>	.Cerebrospinal fluid
CVCs	.Central venous catheters
DFA	Direct immunofluorescence or direct fluorescent antibody
<i>DM</i>	.Diabetes mellitus
DNA	.Deoxy-nucleic acid
<i>ECMO</i>	.Extracorporeal membrane oxygenation
<i>EDTA</i>	.Ethylene diamine tetra acetic acid

List of Abbreviations (Cont...)

Abb.	Full term
EOS	.Early-onset sepsis.
EV	.Enterovirus
FDA	.Food and drug administration
FIO2	.Fraction of inspired oxygen
<i>GBS</i>	.Group B streptococci
<i>GI</i>	. Gastroint estinal
<i>HA</i>	.Hemagglutinin
<i>HAI</i>	.Hospital-acquired infection
HCO3	. Bicarbonate
HCOV	.Human pathogenic coronavirus
<i>HFMD</i>	.Hand, foot and mouth disease
<i>HFMV</i>	.High frequency mechanical ventilation
<i>HMPV</i>	.Human-metapneumovirus
HRVS	.Human rhinoviruses
HSV	.Herpes simplex virus
I:T ratio	.Immature to total white blood cells ratio
<i>IFN</i>	.Interferon
<i>IL</i>	. Interleukin
<i>INF</i>	.Tumor necrosis factor
<i>IQR</i>	.Interquartile range
<i>IVIG</i>	.Intravenous-immune globulins
<i>K</i>	. Potassium
<i>LBW</i>	.Low birth weight
LOS	.Late Onset Sepsis
<i>M</i>	.Matrix
<i>MAP</i>	.Mean airway pressure
MERS	.Middle eastern respiratory syndrome
<i>MPL</i>	.Mannose binding lactin

List of Abbreviations (Cont...)

Abb.	Full term
<i>N</i>	Nade oprotein
<i>NA</i>	Neuroaminidase
<i>Na</i>	Sodium
NICHD	National Institute of Child Health and Development
<i>NICU</i>	Neonatal Intensive Care Unit
NMCU	Neonatal medium care unit
<i>NPA</i>	Nasopharyngeal aspiration
OI	Oxygenation index
P	Phosphoprotein
PaCo2	Partial pressure of carbon dioxide
BG	Blood gases
Pao2	Partial pressure of oxygen
PCT	Procalciton in
PEEP	Positive end expiratory pressure
PH	Potential hydrogen
<i>PIP</i>	Positive inspiratory pressure
<i>PROM</i>	Premature rupture of membrane
<i>RBS</i>	Random blood sugar
<i>RD</i> , <i>RF</i>	Respiratory distress, respiratory failure
<i>RNA</i>	Ribonucleic acid
rRT-PCR	Real time reverse-transcription polymerase chain reaction
<i>RSV</i>	Respiratory syncytial virus
<i>SD</i>	Standard deviation
SIMV	Synchronized intermittent mechanical ventilation
<i>SNAP</i>	Score for neonate acute physiology
<i>USA</i>	United States of America

List of Abbreviations (Cont...)

Abb.	Full term	
IITIe	Urinary tract infection	
	Ultraviolet light	
<i>VLBW</i>	Very low birth weight	
$WBC\ count$	White blood cell count	

List of Tables

Table No.	Title Page	No.
Table (1):	Principles for the Prevention of Health Care–Acquired Infections in the NICU	18
Table (2):	The respiratory viruses detected in infants during acute respiratory infections.	26
Table (3):	Variables of SNAP-II:	57
Table (4):	Downes' score	58
Table (5):	Normal total and differential leukocytic counts (x10 $^{9}/L$) in the first month of life	60
Table (6):	Hemoglobin (gm%) changes in babies in the first year of life	60
Table (7):	Normal serum creatinine values in term and preterm infants	62
Table (8):	Normal range of arterial blood gas values for term and preterm infants in normal body temperature and assuming normal blood hemoglobin content	63
Table (9):	Sequences of oligonucleotides used for detection of viruses in the study	71
Table (10):	Demographic characteristics of the studied neonates (n=40)	77
Table (11):	Frequency of risk factors of sepsis in the studied neonates (n=40)	79
Table (12):	Clinical characteristics of the studied neonates (n=40)	81
Table (13):	Respiratory data, severity and outcome of sepsis of the studied neonates (n=40)	84

List of Tables (Cont...)

Table No.	Title	Page No.
Table (14):	Laboratory investigation of the neonates (n=40)	
Table (15):	Results of blood gases and blood of the studied neonates (n=40)	
Table (16):	Frequency and types of the revealed by multiplex PCR in the group (n=16)	studied
Table (17):	"A logistic regression analysis study	

List of Figures

Fig. No.	Title	Page	No.
Figure (1): Figure (2):	Diagrammatic view of influenza A Lung tissue from a fatal ca	ase of	
Figure (3):	adenovirus type 7 pneumonia	on of enza A 888bp),	45
Figure (4):	Gel electrophoretic separation multiplex PCR product of Ader (330bp) and Herpes simplex virus (550bp)	on of novirus type I	
Figure (5):	Flow chart showing construction of	of the 2	
Figure (6):	stages of the study. Birth weight in both negative positive viral multiplex PCR grovalue = 0.989)	e and ups (P	75
Figure (7):	Frequency of early and late or sepsis in both negative and positive multiplex PCR groups (P Value = 0	nset of ve viral	
Figure (8):	Frequency of neonates needing in negative and positive viral mu PCR groups (P value = 0.166)	ntropes ıltiplex	
Figure (9):	Frequency of neonates n ventilation in negative and positive multiplex PCR groups (P value = 0	e viral	83
Figure (10):	Dowens' score in negative and p viral multiplex PCR groups (P v 0.209).	alue =	85
Figure (11):	Oxygenation index in positive negative viral multiplex PCR gro	e and	86
	value = 0.0070.		on

List of Figures (Cont...)

Fig. No.	Title	Page	No.
Figure (12):	Snap II score in negative and poviral multiplex PCR groups (P va 0.989).		87
Figure (13):	Clinical outcome in negative positive viral multiplex PCR grou value = 0.356)	ps (P	88
Figure (14):	WBC counts in negative and po viral multiplex (PCR) groups (P va	sitive llue =	01
Figure (15):	0.073)Liver enzymes increased in pomultiplex viral PCR group negative multiplex viral PCR grovalue = 0.028)	sitive than	91
Figure (16):	Box plot comparing AST level betthe studied groups (P= 0.017)		92
Figure (17):	Box plot comparing ALT level betthe studied groups (P= 0.012)	tween	92
Figure (18):	Liver enzymes in a) positive multiplex PCR, b) negative multiplex PCR and c) total samp value = 0.028).	viral	93
Figure (19):		realed	

Introduction

Neonatal sepsis is defined as a clinical syndrome of bacteremia with systemic signs and symptoms of infection in the first 4 weeks of life. When pathogenic bacteria gain access into the bloodstream, they may cause overwhelming infection without much localization (septicemia), or may be predominantly localized to the lung (pneumonia) or to the meninges (meningitis) (*Paolucci et al.*, 2012).

Neonatal early onset sepsis (EOS) is defined by *the centers for disease control (CDC)* as blood or cerebrospinal fluid (CSF) culture-proven infection occurring in a new born; that is younger than 7 days of age *(Phares et al., 2008)*. Neonatal late onset sepsis (LOS) is defined as occurring from 8-90 days of life, occurring in otherwise healthy term infants in the community or affecting premature infants in the Neonatal Intensive Care Unit (NICU). For epidemiologic purposes, LOS infections occurring in very low birth weight (LBW) infants in the NICU are defined as those occurring at more than 72 hours of life *(Puopolo, 2017)*.

Because preterm infants in the NICU may not have classic symptoms that are observed in older infants and children, the possibility that a viral respiratory pathogen is the causative agent may not be considered (*Colvin et al.*, 2012).

The contribution of respiratory viruses to clinical signs of infection among infants in the NICU is largely unknown. These

infants are evaluated for sepsis, yet their bacterial cultures often are sterile. Because of diminished confidence in culture results, infants may receive prolonged antibiotic therapy (Cantey and Sanshez, 2011).

Immunoflourescence of respiratory secretions, nasopharyngeal aspiration (NPA), tracheal aspirate and bronchoalveolar lavage (BAL) can be performed against a panel of respiratory viruses and is highly specific. The use of PCR can increase the rate of diagnosis of treatable causes of pneumonia from 13% to 31% (Clements et al., 2000).

Comparative studies have shown that real-time reverse-transcription polymerase chain reaction (rRt-PCR) assays are substantially more sensitive than conventional methods, such as viral culture and immunofluorescence assays, for detecting respiratory viruses (*Lassaumene et al.*, 2010).

Furthermore, compared to conventional PCR and other real-time methods, multiplex rRT-PCR has a significant advantage as it permits simultaneous amplification of several viruses in a single reaction. This facilitates cost effective diagnosis, enabling the detection of multiple viruses in a single specimen, with high sensitivity (91%) and high specificity (100%) (Paranhos-Baccala et al., 2008).