Metabolic Syndrome and Psychiatric Profile in a Sample of Egyptian Patients with Obstructive Sleep Apnea

Thesis

Submitted for the partial fulfillment of M.D. Degree in Psychiatry

Ву

Sarah Ashraf Mohamed

M.Sc.in NeuroPsychiatry

Under the Supervision of

Prof. Dr. Tarek Asaad Abdo

Professor of Psychiatry
Faculty of Medicine – Ain Shams University

Prof. Dr. Amany Haroon Elrasheed

Professor of Psychiatry
Faculty of Medicine – Ain Shams University

Prof. Dr. Ghada Refaat Ameen

Professor of Psychiatry
Faculty of Medicine – Ain Shams University

Prof. Dr. Mona Ibrahim Awaad

Professor of Psychiatry
Faculty of Medicine – Ain Shams University

Dr. Nesreen Mohamed Mohsen

Assistant Professor of Psychiatry Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to Allah the Most Beneficent and Merciful.

I wish to express my deepest gratitude and thanks to **Prof. Dr. Tarek Asaad Abdo,** Professor of Psychiatry, Faculty of Medicine – Ain Shams University, for his constructive criticism, unlimited help and givingme the privilege to work under his supervision.

My most sincere gratitude is also extended to **Prof. Dr.Amany Haroon Elrasheed,** Professor of Psychiatry, Faculty of Medicine – Ain Shams University, for her enthusiastic help, continuous supervision, guidance and support throughout this work.

Words fail to express my appreciation to **Dr. Ghada Refaat Ameen,** Professor of Psychiatry, Faculty of Medicine – Ain Shams University, for the time and efforts she has devoted to accomplish this work.

I would like also to thank with great gratefulness **Dr. Mona Ibrahim Awaad,** Professor of Psychiatry, Faculty of Medicine – Ain Shams University, for her scientific direction, cooperation and great help in this work.

My profound thanks and gratitude go to **Dr. Nesreen Mohamed Mohsen**, Assistant Professor in Psychiatry, Faculty of Medicine – Ain Shams University, for her meticulous instruction and efforts in the whole work.

Last but not least, I can't forget to thank my parents, my dear husband for pushing me forward in every step in the journey of my life.

Candidate

Sarah Ashraf Mohamed

ListofContents

Subject	PageNo.
List of Abbreviations	i
List of Tables	iv
List of Figures	vi
Introduction	
Review of Literature	
Sleep Physiology	6
The Effect of Obstructive Sleep Apnea on Metabolic Profile	31
The Effect of Obstructive Sleep Apnea on Psychiatric Profile	54
Aims of the Work	64
Subjects and Methods	65
Results	79
Discussion	114
Study Limitations	126
Conclusions	127
Recommendations	128
Summary	129
References	
Arabic Summary	

ListofAbbreviations

Abbr. Full-term

ACTH : Adrenocorticotrophic hormone

AHI : Apnea-hypopnea index

ASUIP : Ain Shams University Hospitals

ATPIII : Adult Treatment Panel III report

BMI : Body mass index

CCK : Cholecystokinin

CHD : Coronary heart disease

CPAP : Continuous positive airway pressure

CRH : Corticotropin Releasing Hormone

CRP : C-reactive protein

ED : Erectile dysfunction

EMG : Electromyogram

EOG : Electrooculogram

FP1, FP2: Fronto-parietal scalp electrodes

GC : Glucocorticoid

GH : Growth hormone

GLP : Glucagon-like peptide

HAM-A : Hamilton Anxiety Rating Scale

HBP : High blood pressure

HDL : High density lipoprotein

HPA : Hypothalamus-Pituitary Adrenal

HRSD: Hamilton Rating Scale for Depression

IR : Insulin resistance

ListofAbbreviations (Cont.)

Abbr. Full-term

LDL : Low density lipoprotein

LH : Lateral hypothalamus

LOC : Left outer canthus

mPFC : Medial prefrontal cortex

Mets : Metabolic syndrome

OSA : Obstructive sleep apnea

OSA : Obstructive sleep apnea syndrome

PLMs: Periodic leg movements

PRL : Plasma prolactin

PSG : Polysomnography

PYY : Peptide YY

RAAS : Renin-angiotensin-aldosterone system

RDI : Respiratory disturbance index

REM : Rapid eye movement

ROC : Right outer canthus

SBD : Sleep breathing disorder

SCID I : Structured Clinical Interview for DSM-IV

SCN : Suprachiasmatic nuclei

SD : Standard deviation

SFSR : Sleeping to Forget and Sleeping to Remember

SREBP-1: Sterol regulatory element-binding protein 1

SWS : Slow wave sleep

Listof Abbreviations (Cont.)

Abbr. Full-term

TRH : Thyrotropin-Releasing Hormone

vmPFC: Ventromedial Prefrontal Cortex

WHO : World Health Organization

WMH : White matter hyperintensities

ListofTables

TableNo.	Title	PageNo.
Table (1):	Main hormonal changes in obes obstructive sleep apnea syndrome.	•
Table (2):	Adult Treatment Panel III (ATPIII) criteria of the metabolic syndrome	
Table (3):	TG levels in cases versus control	83
Table (4):	Comparing total cholesterol le cases versus control	
Table (5):	Clinical and laboratory data in versus control	
Table (6):	Sex distribution in both groups	88
Table (7):	HTN in both groups	89
Table (8):	Total Cholesterol levels in both gr	oups 92
Table (9):	Clinical and laboratory data in p with OSA and Ms versus thos OSA alone	se with
Table (10):	Comparison between cases according to presence of me syndrome as regard PSG data	etabolic
Table (11):	Clinical and laboratory data of p with OSA and psychiatric disorder	<u>.</u>
Table (12):	PSG parameters among patient OSA and psychiatric disorders	
Table (13):	Comparison between PSG parameter patients with OSA and psy disorders versus OSA alone	chiatric

Listof Tables (Cont.)

TableNo.	Title	PageNo.
Table (14):	Clinical and laboratory data of OSA and Psychiatric disorder alone	versus OSA
Table (15):	Psychiatric disorder and syndrome in OSA	

Listof Figures

Figure No.	Title	PageNo.
Figure (1):	Potential interactions between and obstructive sleep apnea	•
Figure (2):	The impact of sleep on emotional reactivity and functional connectivity	
Figure (3):	REM sleep emotion recalibration	model 22
Figure (4):	The sleep to forget and sleep remember (SFSR) model	-
Figure (5):	Regulation of GH secretion in patients without OSA and obese patients with OSA.	patients
Figure (6):	Schematic diagram illustrating reduced or fragmented seep can p obesogenic behaviors in children.	romote
Figure (7):	Potential interactions between and obstructive sleep apnea in chi	•
Figure (8):	Overlapping symptoms of obs sleep apnea (OSA) and major depre	
Figure (9):	Pie chart of sex distribution	79
Figure (10):	HistograMs of BMI of both ca	
Figure (11):	Bar chart comparing mean circumference of cases versus groups	control
Figure (12):	Bar chart comparing mean fasting sugar of cases versus control ground	

Listof Figures (Cont.)

Figure No.	Title P	ageNo.
Figure (13):	Pie Chart of percentage of patients OSA and metabolic syndrome comp to those with OSA alone.	ared
Figure (14):	Bar Chart comparing mean age patient with OSA+MS versus alone	OSA
Figure (15):	Pie Chart percentage of HTN in pat with OSA and metabolic syndr compared to those with OSA alone.	rome
Figure (16):	Bar chart comparing BMI in pat with OSA and metabolic syndrous versus those with OSA alone	rome
Figure (17):	Bar Chart comparing mean vacircumference of patients OSA+MS versus OSA alone	with
Figure (18):	Analysis of lipid profiles in both gro	oups 92
Figure (19):	Scatter plot showing correlation betw AHI and weight among patients OSA	with
Figure (20):	Scatter plot showing correlation between REM % and HDL among patients OSA	with
Figure (21):	Scatter plot showing correlation between Stage 1 % and HDL among pat with OSA	ients

Listof Figures (Cont.)

Figure No.	Title Pagel	No.
Figure (22):	Scatter plot showing correlation between REM-latency and weight among patients with OSA and MS.	97
Figure (23):	Scatter plot showing correlation between HDL and stage 3% among patients with OSA and MS.	98
Figure (24):	Scatter plot showing correlation between HDL and stage 1% among patients with OSA and MS.	98
Figure (25):	Scatter plot showing correlation between AHI and weight among patients with OSA alone.	99
Figure (26):	Scatter plot showing correlation between arousal index and total cholesterol among patients with OSA alone	100
Figure (27):	Number of psychiatric patients in obstructive sleep apnea case group	102
Figure (28):	Pie Chart showing sex distribution among patients with OSA and psychiatric disorder.	103
Figure (29):	Pie Chart percentage of HTN in patients with OSA and psychiatric disorder	105
Figure (30):	Pie Chart percentage of patients diagnosed to have metabolic syndrome with OSA and psychiatric disorder	106

Listof Figures (Cont.)

Figure No.	Title	PageNo.
Figure (31):	Scatter plot showing correlation larousal index and depression among patients with OSA psychiatric disorder	severity A and
Figure (32):	Scatter plot showing correlation REM latency and depression among patients with OSA psychiatric disorder	severity A and
Figure (33):	Pie chart comparing the percer MS among patients with OS psychiatric disorder versus without	SA and those

Introduction

Sleep is important in regulating metabolism; Metabolism involves two biochemical processes that occur in living organisms. The first is anabolism, which refers to the buildup of molecules. The second is catabolism, the breakdown of molecules. These two processes work to regulate the amount of energy the body uses to maintain itself. During non-REM sleep, metabolic rate and brain temperature is lowered to deal with damages that may have occurred during time of wakefulness(*Sharma et al.*, *2011*).

It is believed that during normal sleep the metabolic rate reduces by around 15% and reaches a minimum in the morning in a standard circadian pattern (*Goldberg et al.*, 1988).

Glucose utilization in normal subjects is highest during wakeful state and lowest in NREM sleep and intermediate in REM sleep(*Van Cauter et al.*, 1997).

Growth hormone and cortisol are two hormones that have an impact on glucose regulation. Growth hormone is typically elevated at onset of sleep with highest levels during slow wave sleep (SWS) while cortisol levels are greatly increased during the second half of the sleep, predominantly in REM sleep(*Turck et al.*, 1994).