Fractional Thigh Volume by Three Dimensional Ultrasonography for Birth Weight Prediction

Thesis

Submitted as Partial Fulfillment of Master Degree in Obstetrics and Gynecology

Presented by Engy Samy AbdelGawad

M.B.B.CH – Ain Shams University-2005 Fetal care unit-Ain Shams University

Under Supervision of

Prof.Dr. Essam Eldin Mohamed Ammar

Professor of Obstetrics and Gynecology Faculty of Medicine – Ain shams university

Dr. Tarek Aly Raafat

Assistant Professor of Obstetrics and Gynecology Faculty of Medicine – Ain shams university

> Ain shams university Faculty of Medicine 2015

First, and foremost, my deepest gratitude and thanks should be offered to 'ALLAH", the Most Kind and Most Merciful, for giving me the strength to complete this work.

I would like to express my sincere gratitude to **Prof. Dr./ Essam Eldin Mohamed Ammar**, professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University for his continuous support and guidance for me to present this work. It really has been an honor to work under his generous supervision.

I acknowledge with much gratitude to Dr. Tarek Aly Raafat, Assistant Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for his great supervision, efforts and unlimited help to provide all facilities in the whole work.

Last but not least, thanks to my Parents and my Family, for helping me to finish this work.

🔁 Engy Samy AbdelGawad

List of Contents

Page	No.
Introduction	1
Aim of the work	3
Review of literature:	
Chapter 1: Fetal growth	4
Chapter 2: Ultrasound and fetal weight estimation .	34
Patients and methods	61
Results	66
Discussion	96
Summary and Conclusion	.105
Recommendations	.109
References	.110
Arabic summary	

List of Figures

Figure N	o. Title Page No.
Figure (1):	Fetal growth and weight among different
	categories
Figure (2):	Normal fetal growth curves and percentiles13
Figure (3)	Picture of IUGR baby16
Figure (4):	Progressive umbilical artery wave form patterns28
Figure (5):	Normal and abnormal MCA wave forms29
Figure (6):	Picture of macrosomic baby33
Figure (7):	Different Formulae used for estimation of birth weight by ultrasound
Figure (8):	Transverse axial sonogram of the fetal head: measurement of biparietal diameter41
Figure (9):	Abdominal Circumference (AC)41
Figure (10):	Longitudinal sonogram of the fetal femur length (FL)42
Figure (11):	Fat mass measured at the level of middle arm44
Figure (12):	Abdominal fat thickness measured at the level of abdominal circumference
	Ultrasonic view showing mid thigh circumference

Figure (14):	Fetal thigh volumetry analyzed using the multiplanar method
Figure (15):	Fetal thigh volumetry analyzed using the Virtual Organ Computer-aided Analysis (VOCAL) technique
Figure (16):	Fractional thigh (TVol) volume is based on 50% of the femoral diaphysis length59
Figure (17):	Fractional thigh volume (TVol)60
Figure (18):	Bar-Chart showing Age Distribution in Included Women
Figure (19):	Pie-Chart showing Parity Distribution in Included Women
Figure (20):	Bar-Chart showing Weight Distribution in Included Women
Figure (21):	Bar-Chart showing BMI Distribution in Included Women
Figure (22):	Bar-Chart showing Gestational Age Distribution in Included Women
Figure (23):	Box-Plot Chart showing Sonographic Fetal Biometry in Included Women71
Figure (24):	Box-Plot Chart showing 3D Sonographic Thigh Volume in Included Women72

Figure (25):	Box-Plot Chart showing Actual Birth Weight and
	Estimated Fetal Weight using Different Formulas
	in Included Women74
Figure (26):	Box-Plot Charts showing Errors between Actual
	Birth Weight and Estimated Fetal Weight using
	Different Formulas in Included Women76
Figure (27):	Box-Plot Charts showing Error Percentages
	between Actual Birth Weight and Estimated Fetal
	Weight using Different Formulas in Included
	Women
Figure (28):	Box-Plot Charts showing Absolute Errors
	between Actual Birth Weight and Estimated Fetal
	Weight using Different Formulas in Included
	Women
Figure (29):	Box-Plot Charts showing Absolute Error
	Percentages between Actual Birth Weight and
	Estimated Fetal Weight using Different Formulas
	in Included Women79
Figure (30):	Scatter Plot showing Correlation between Actual
	Birth Weight and EFW using Hadlock's Formula 83
Figure (31):	Scatter Plot showing Correlation between Actual
	Birth Weight and EFW using BPD, AC and TVol
	84

Figure (32):	Scatter Plot showing Correlation between Actual Birth Weight and EFW using AC and TVol8	55
Figure (33):	Scatter Plot showing Correlation between Actual Birth Weight and EFW using TVol8	66
Figure (34):	Scatter Plot showing Correlation between Actual Birth Weight and TVol	37
Figure (35):	ROC Curves for Fetal Biometry and EFW using different Formulas as Predictor of Macrosomia 8	39
Figure (36):	ROC Curves for Fetal Biometry and EFW using different Formulas as Predictor of LBW9	03

List of Tables

Table N	o. Title Page No.
Table (1):	Sensitivity of ultrasonographic diameters for detecting IUGR
Table (2):	Different ultrasound regression formulae for estimating fetal weight
Table (3):	Demographic Data of Included Women66
Table (4):	Sonographic Fetal Biometry in Included Women70
Table (5):	Actual Birth Weight and Estimated Fetal Weight using Different Formulas in Included Women73
Table (6):	Errors between Actual Birth Weight and Estimated Fetal Weight using Different Formulas in Included Women
Table (7):	Differences regarding Errors between Estimated Fetal Weight using Different Formulas in Included Women
Table (8):	Correlation between Actual Birth Weight and EFW using Various Formulas as well as Fetal Biometry
Table (9):	Area under ROC Curves for Fetal Biometry and EFW using different Formulas as Predictor of Macrosomia

Table (10):	Accuracy of Fetal Biometry and EFW using
	different Formulas as Predictor of Macrosomia91
Table (11):	Area under ROC Curves for Fetal Biometry and
	EFW using different Formulas as Predictor of
	LBW94
Table (12):	Accuracy of Fetal Biometry and EFW using
	different Formulas as Predictor of LBW95

List of Abbreviations

2D USTwo dimensional ultrasonography

3D USThree dimensional ultrasonography

ABW.....Actual birth weight

ACAbdominal circumference

AE..... Absolute error

AFI Amniotic fluid index

APEAbsolute percentage error

AUCArea under the curve

BMIBody mass index

BPDBiparietal diameter

CIConfidence interval

E.....Error

EFWEstimated fetal weight

EP.....Error percentage

FLFemur length

GHVGrowth hormone variant

HAPOHyperglycemia and Adverse Pregnancy Outcomes

HCHead circumference

HSHighly significant

IGF-I and IIInsulin-like growth factor-I and II

IQRInterquartile range

IUGRIntrauterine growth restriction

LBWLow birth weight

LGALarge for gestational age

MCAMiddle cerebral artery

MPD main paired difference

NSNon-significant

PGHPlacental Growth Hormone

PIPulsatility index

PSVPeak systolic velocity

rPearson's correlation coefficient

ROCReceiver operator characteristics

SSignificant

SDStandard deviation

SGASmall for gestational age

TVolThigh volume

VOCALVirtual Organ Computer-aided Analysis

INTRODUCTION

Estimation of fetal weight is essential in daily obstetric practice particularly close to term. It guides clinicians to finalize important obstetrical decisions. Low birth weight and excessive fetal weight at delivery both are associated with an increased risk of neonatal complications during labour and the puerperium. (Owen et al., 2003)

Nowadays, ultrasound is the main diagnostic tool for fetal birth weight (BW) evaluation. The majority of birth weight prediction formulas rely on the fetal biometry data derived from 2-D ultrasound measurement. However, the precision of those conventional formulas remains unsatisfactory with a mean error of 7-10%. (Schild et al., 2007)

The majority of the commonly used formulae for estimating fetal weight include measurements of the head, abdomen and femur both alone and in combination. None of these formulae pays attention to the soft tissue mass of the fetus. However, since fetal weight depends not only on head and body dimensions but also on extremity size, it seems reasonable to investigate the role of other body measurements in improving fetal weight estimates. (**Rizwan** *et al.*, 2008)

Considering that thigh and arm volumes are parameters that are well established as markers for fetal growth and

nutrition, several studies have utilized these limbs volume as a predictor for birth weight, with more reliable results than those from the traditional formulas utilized by 2D US (**Song et al., 2000**)

Initially, the fetal thigh volume (TVol) measurement was indirectly performed by means of two-dimensional ultrasound (2D US). However, 2D US cannot provide an accurate measurement of fetal limb volume. The majority of studies on fetal limbs volume evaluation by 2D US calculate the volume based on a cross sectional area in only one cutting plane that may not be the most appropriate, so the calculation is subject to error. (Vintzileos *et al.*, 1987)

The arrival of the 3D US has allowed a more accurate volumetric assessment of several fetal organs, for an earlier and more precise diagnosis of fetal growth and developmental deviations. (**Edward** *et al*, 2007)

AIM OF THE WORK

The aim of this study is to introduce fractional limb volume as a new ultrasonographic parameter, validate reliability of fractional limb volume measurements, develop new birth weight prediction models, and examine their practical utility for estimating fetal weight during late pregnancy.

FETAL GROWTH

Human fetal growth is characterized by sequential patterns of tissue and organ growth, differentiation and maturation that are determined by maternal provision of substrate, placental transfer of these substrates, and fetal growth potential governed by the genome (Cunningham et al., 2005).

The process of fetal growth comprises three consecutive and somewhat overlapping phases.

The first phase is the phase of cellular hyperplasia and encompasses the first 16 weeks of gestation.

The second phase, known as the phase of concomitant hyperplasia and hypertrophy, occurs between the 16th and 32nd weeks and involves increases in cell size and number.

The third and final phase, called the phase of cellular hypertrophy, occurs between the 32nd week and term and is characterized by a rapid increase in cell size. Quantitatively, normal singleton fetal growth increases from approximately 5 g/day at 14 to 15 weeks of gestation to 10 g/day at 20 weeks and 30 to 35 g/day at 32 to 34 weeks, after which the growth rate decreases (*Chiesa et al.*, 2008).

Although many factors have been implicated, the precise cellular and molecular mechanisms by which normal fetal