Omission of Axillary Dissection with Breast Conservation in Early Breast Cancer

Thesis

Submitted in Partial Fulfillment of the M.D. Degree in **General Surgery**

Presented by

Karim Fahmy Abd Elmoaty

Master Degree in General Surgery Faculty of Medicine - Ain Shams University

Under supervision of

Prof. Dr. Fateen Abd-Elmoneim Anous

Professor of General Surgery Faculty of Medicine, Ain Shams University

Prof. Dr. Hala Abou Senna

Professor of Radiology Faculty of Medicine, Ain Shams University

Dr. Sherif Abd Elhalim Ahmed

Lecturer General Surgery
Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain-Shams University 2014

List of Contents

Ti	Title Page		
•	Introduction1		
•	Aim of the Study4		
•	Review of Literature:		
	o Pathology of the Breast5		
	o Diagnosis of Breast Cancer28		
	o Management of Early Breast Cancer69		
	o Changing role of Axillary Management124		
•	Patients and methods144		
•	Results		
•	Discussion		
•	Summary and Conclusion		
•	References		
•	Arabic Summary		

List of Tables

Table No.	Title Page
Table (1):	Medical history of a breast problem29
Table (2):	BI-RADS report final assessment categories
Table (3):	University of Southern California-Van Nuys Prognostic
Table (3).	Index (USC- VNPI)
Table (4):	Recommendations for use of SNB and levels of evidence136
Table (5):	Morbidity of sentinel lymph node biopsy (SLNB) compared to axillary lymph node dissection (ALND)137
Table (6):	Patient characteristics in ACOSOG Z11139
Table (7):	Age difference between the two groups160
Table (8):	Side of the tumor in the two groups161
Table (9):	Site of the mass in the two groups163
Table (10):	Type of biopsy in the two groups165
Table (11):	Difference in the operative time in the two groups166
Table (12):	Intra-operative blood loss in the two groups167
Table (13):	Intra-operative vascular injury168
Table (14):	Intra-operative nerve injury169
Table (15):	Total drainage volume in the two groups170
Table (16):	Drainage days in the two groups171
Table (17):	Seroma rate in the two groups172
Table (18):	Postoperative wound infection, hematoma and necrosis173 $$
Table (19):	Postoperative wound infection, hematoma174
Table 20):	$Lymphoedema\ of\ the\ arm\ in\ the\ two\ groups \underline{\hspace{1cm}} 175$
Table (21):	Development of suspicious LNS in both groups176
Table (22):	Shoulder stiffness in both groups177
Table (23):	Postoperative numbness, tingling and parasthesia in both groups178
Table (24):	Postoperative pain in both groups179

List of Figures

Figure No.	Title	ge
Figure (1):	Papillary DCIS	11
Figure (2):	Cribriform DCIS with central necrosis (x400)	12
Figure (3):	Lobular carcinoma in situ	15
Figure (4):	Invasive ductal carcinoma, no special type	16
Figure (5):	BI-RADS description of masses	34
Figure (6):	(A) Calcifications based on their morphology	35
	(B) Calcifications based on their distribution	36
	(C) Benign, rode like calcifications	36
Figure (7):	Stereomammography unit	38
Figure (8):	Infiltrating ductal carcinoma as appears in a standard mammogram (left) and in a tomosynthesis (right)	39
Figure (9):	Infiltrative ductal carcinoma by ultrasound (left), Color Doppler (central), and contrast enhanced ultrasound (right)	42
Figure (10):	(A) PET image, CT image, and fused images 18FDG PET showing a focal lesion in the left breast with quite high an uptake	49
	(B) Post-treatment appearance of a C6 bone metastasis. CT: focal bone condensation. 18F DG PET: no uptake	49
Figure (11):	Digital infrared thermal imaging scans	51
Figure (12):	Ductogram. CC (left) and MLO oblique (right) mammographic views demonstrate a mass (arrows) posterior to the nipple and outlined by contrast	52
Figure (13):	(A) ductal trifurcation visualized by ductoscopy (B) and its distention during lavage on ultrasound	53
Figure (14) :	Illustrates methods of obtaining a cosmetically acceptable breast scar	57
Figure (15):	Patient lying prone on Stereotactic table with breast suspended through an opening	59

List of Figures (Cont.)

Figure No.	Title	ge
Figure (16):	Variants of incisions and extent of breast cancer surgery (a,b,c,d and e)	72
Figure (17):	A photograph pf a patient who had undergone a pervious right quadrantectomy for breast cancer	80
Figure (18):	Type of incision for tumor in the upper outer quadrant	85
Figure (19):	Type of incision for tumor in the upper inner quadrant	86
Figure (20):	Type of incision for tumor in the inferior outer quadrant	86
Figure (21):	Type of incision for tumor in the inferior quadrant	87
Figure (22):	Diagram showing the sentinel node mapping	94
Figure (23):	Sentinel node biopsy	95
Figure (24):	Sentinel node biopsy	96
Figure (25):	Dye used in sentinel node biopsy	97
Figure (26):	Sentinel node biopsy	98
Figure (27):	Level I, II and III axillary lymph node dissection	102
Figure (28):	Axillary lymph node dissection	103
Figure (29):	Semicircular incision in the upper quadrant over the tumor and separate incision in the axilla	104
Figure (30):	Moving window operation	106
Figure (31):	While lifting the wound retractor, a wide skin flap is developed using Power- Star bipolar scissors	106
Figure (32):	Postoperative appearance of conserved right breast after the moving window operation	108
Figure (33):	Interstitial catheter-based brachytherapy	115
Figure (34):	Balloon-based intracavitary brachytherapy with the MammoSite system	116
Figure (35):	Sentinel Node Biopsy	134

List of Figures (Cont.)

Figure No.	Title Page	
Figure (36):	(A) mammograms show disruption of the normal structure (Breast mass). (B) microcalcifications14	7
Figure (37):	Nodal vascular pattern: a) Benign, central, hilar vessels; b) Malignant, mixed peripheral and central increased vascularization14	.7
Figure (38):	Fine Needle Aspiration Cytology14	
Figure (69):	Excisional Biopsy14	
Figure (40):	Site of incision15	
Figure (41):	Elliptical Incision Encompass the mass15	
Figure (42):	Elevation of flap15	
Figure (43):	Marking of specimen15	
Figure (44):	Identification of axillary vein15	
Figure (45):	Identification of long thoracic nerve15	
Figure (46):	Identification of axillary contents15	
Figure (47):	Marking of incision15	
Figure (48):	Delivery of the mass15	
Figure (49):	Axillary clearance15	6
Figure (50):	Marking of the mass15	6
Figure (51):	Breast conservation of UOQ mass15	7
Figure (52):	Immediate post op result of BCS15	8
Figure (53):	Delayed post op result of BCS15	8
Figure (54):	Age difference between the two groups16	0
Figure (55):	Side of the tumor in the two groups16	1
Figure (56):	Site of the mass in the two groups16	3
Figure (57):	Type of biopsy in the two groups16	5
Figure (58):	Difference in the operative time in the two groups16	6
Figure (59):	Intra-operative blood in the two groups16	7
Figure (60):	Intra-operative vascular injury16	8

List of Figures (Cont.)

Figure No.	Title Page
Figure (61):	Intra-operative nerve injury169
Figure (62):	Total drainage volume in the two groups170
Figure (63):	Drainage days in the two groups171
Figure (64):	Seroma rate in the two groups172
Figure (65):	Postoperative wound infection173
Figure (66):	Postoperative wound hematoma174
Figure (67):	Lymphoedema of the arm in the two groups175
Figure (68):	Development of suspicious LNS in both groups 176
Figure (69):	Shoulder stiffness in both groups177
Figure (70):	Post-operative numbness, tingling and parasthesia178
Figure (71):	Postoperative pain in both groups179

List of Abbreviation

ACR	American College of Radiology
ACS	The American college of surgeons
ALND	Axillary lymph node dissection
APBI	Activated Partial Breast Irridiation
ВСТ	Breast Conserving Therapy
BIRADS	Breast Imaging Reporting and Data System
BRCA1	Breast Cancer gene type 1
BRCA2	Breast Cancer gene type 2
BSE	Breast self examination
CAD	Computer-Aided Detection
СВЕ	Clinical breast examination
CC	Cranio caudal view
CMF	Cyclophosphamide, Methotraxate5-flurouracil
DBCG	Danish Breast Cancer Group
DCIS	Ductal carcinoma in situ
EBCTCG	Early breast cancer trialists collaborative group
EBCTCG	Early Breasts Cancer Trialists' Collaborative Group
EIC	Extensive intraductal component
EORTC	European Organization for Research in Treatment of Caner
FFDM	Full field digital Mammography
HDR	High dose rate
НТ	Hormonal therapy
LABC	Locally Advanced Breast Cancer
LCIS	Lobular arcinoma in s situ
LDR	Low dose rate irradiation
LR	Local recurrence
MLO	Medio lateral oblique view
MRI	Magnetic resonance imaging

List of Abbreviation (Cont.)

NCI	National Cancer Institute
NSABP	National Surgical Adjuvant Breast and Bowel Project
NSAID	Non-steroidal anti-inflammatory drugs
NSSM	Non skin-sparing mastectomy
OA	Ovarian Ablation
RT	Radiation Therapy
SEER	Surveillance Epidemiology and End Result
SLN	Sentinel lymph node
SSM	Skin-sparing mastectomy
UCLA	University of California at Los Angeles
5-FU	5-Flurouracil

ACKNOWLEDGEMENT

Praise is to Allah, who has guided us to this: never could we have found guidance, had it not been for the guidance of Allah: indeed it was the truth (Al A'raf 43).

Before all, I should express my deep thanks to Allah, without his great blessing I would never accomplish this work.

I wish to express my deep appreciation to **Prof. Dr. Fateen Abd-Elmoneim Anous,** Professor of General Surgery, and Faculty of Medicine, Ain Shams University, for his generous support and guidance which was the primary motive for completing this task.

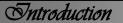
I am also deeply impressed and wish to express my heartfelt thanks to **Prof. Dr. Hala Abo Senna**, Professor of Radiology, Faculty of Medicine, Ain Shams University, for her valuable advises and continuous help which without it, the completion of this work would have been an impossible job.

All my thanks to **Dr. Sherif Abd Alhalim**, Lecturer of General Surgery, Faculty of Medicine, Ain Shams University, for his kind supervision and her valuable work.

Finally many thanks to the Staff of the Department of 6 Surgeries and to all my family.

Karim Fahmy abd

elmoaty

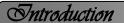


INTRODUCTION

arly breast cancer can be defined as the presence of a mobile tumor within the breast with or without associated mobile enlarged lymph nodes, and represents the vast majority of patients who present now with breast cancer (*Haffty et al.*, 2007).

For many years, axillary lymph node dissection has been used routinely for the staging and regional treatment of all patients with clinically localized breast cancer. This concept is now called into question for several reasons. Increased awareness of the disease and screening programs has led to a rise in the proportion of patients presenting with early-stage disease. These are the patients in whom axillary dissection often fails to yield positive lymph nodes (*Nieweg et al., 2002*).

The relevance and technique of lymph node staging in patients with breast cancer are currently in a state of flux. Is axillary lymph node dissection worthwhile in patients with small primary tumors? Is importance of the tumor status of the lymph node may be surpassed by primary tumor characteristics? The trend for the past four decades has been towards more conservative loco-regional treatment. So breast-conserving treatment was introduced as we know it combined with axillary node dissection and followed by radiotherapy of the breast. This trend for more conserving treatment is continuing. Radiotherapists are conducting a European study to determine whether radiotherapy can be omitted safely in selected patients. It was to be expected that surgeons investigate whether axillary node dissection can be omitted safely in selected patients (*Nieweg et al.*, 2002).



Axillary dissection can be accompanied by many complications such as arm complications including stiffness, loss of sensation and swelling. Postoperative infection is reported to occur in 5% to 14% of patients. The intercosto-brachial nerve can be inadvertently damaged during axillary dissection, causing numbness and parasthesia in the inner side of the upper arm. Some restriction of shoulder movement is not uncommon. Lymphedema is one of the most dreaded complications of axillary dissection and, once established it is refractory to treatment (Maunsell et al., 2003)

In view of the morbidity associated with axillary dissection, it would theoretically be desirable to omit this procedure whenever the possible morbidity clearly outweighed the clinical benefits or when the risk of axillary metastases is very low or when knowledge of node status will have no influence on therapy (*Moore et al.*, 2002).

Controversy continues to surround the best practice for management of the axilla in patients with early breast cancer (EBC) particularly the clinically negative axilla. The therapeutic and staging roles of axillary surgery (with the consequent morbidity of the procedures utilized) have altered. This is due to the increasing frequency of women presenting with early stage disease the more widespread utilization of adjuvant chemo therapy (*Andrew et al.*, 2000).

The sentinel lymph node biopsy is performed to predict the indication of axillary node dissection. However, slow or faulty radiotracer distribution, expended operative time, and prompt decisions based on the analysis of frozen sections by pathologists are problems of sentinel lymph

node biopsy. The sentinel lymph node biopsy has 1-15% false negative results. Thus, less invasive modalities such as ultrasound (US), power Doppler US, mammography, computed tomography(CT), dynamic contrast enhanced magnetic resonance imaging (MRI) and positron emission tomography (PET) have been increasingly attempted to stage an axillary lymph node preoperatively and to diagnose a malignant lymph node (Sung Eun Song et al., 2012).

US had been the most widely used method for the evaluation of lymph nodes. Moreover, preoperative lymph node staging with US combined with either fine needle aspiration or core needle biopsy can achieve high diagnostic accuracy. The assessment of axillary nodal status, size, morphology, cortical thickness, and vascularity are used as feasible diagnostic criteria. Of these criteria, longitudinal-transverse (LT) axis ratio, concentric or eccentric cortical thickening, and absent or displaced fatty hilum on gray scale US and higher peripheral vascularity on power Doppler US are reported as the most reliable criteria for predicting metastatic lymph nodes. However, some criteria such as cortical thickening or displaced fatty hilum are subjective (Yang et al., 2001).

In summary there is still a need to justify not performing a recognized effective method of axillary staging on a case-by-case basis because the axillary status is still the most reliable prognostic indicator for planning a patient's management. If the woman is at low risk of axillary disease and the result of axillary staging is highly unlikely to alter the management, then breast conservation surgery with radiotherapy to the breast and axilla or occasionally 'watch' policy can be valid alternative (*Andrew et al.*, 2000).

AIM OF THE STUDY

he aim of the study is to assess the possibility of omission of axillary dissection in cases of early breast cancer and its possible benefits.

PATHOLOGY OF BREAST CANCER

he National Cancer Institute in America estimates that there are currently more than 2 million breast cancer survivors in the United States. The risk is even higher for women with certain risk factors, such as a strong family history or known *BRCA1* or *BRCA2* mutations. However, these statistics portray only one aspect of the problem. As new information accumulates, new paradigms of management compete for acceptance with existing ones. It is axiomatic that good scientific data provides the base for good clinical management. Information obtained from molecular, biologic, and pathologic investigations and from clinical trials provides the major focus of this chapter (*Rise et al.*, 2002).

Epidemiology

Breast cancer is the most common malignancy in North American women and for women throughout the industrialized world. In the United States, breast cancer accounts for 32% of all cancers in women. The American Cancer Society estimates that during 2005, 211,240 women will be diagnosed as having breast cancer. The incidence rate of breast cancer has increased steadily over the past 40 years, by about 4% per year (*Rise et al.*, 2002).

Risk Factors

The incidence of breast cancer varies substantially according to the presence or absence of certain well-established risk factors among these factors, the two most prominent are gender and age.