

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Irrigation and Hydraulics Department

A Spatially Variable Numerical Model for the Estimation of Runoff Hydrographs

A Thesis Submitted in Partial Fulfillment for the Requirements of the Degree of Master of Science in Civil Engineering

(Irrigation and Hydraulics)

Prepared By Remah Farid Mohamed Ali Foda

Bachelor of Science in Civil Engineering
(Structural Engineering)
Faculty of Engineering, Ain Shams University, 2007

Supervised By

Dr. Mohamed Abdel Hamid Gad

Irrigation and Hydraulics Department
Faculty of Engineering
Ain Shams University

Prof. Dr. Ayman George Awadallah

Civil Engineering Department
Faculty of Engineering
Fayoum University

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Irrigation and Hydraulics Department

Approval sheet

A Spatially Variable Numerical Model for the Estimation of Runoff Hydrographs

By REMAH FARID MOHAMED ALI FODA

B.Sc. Civil Engineering, Ain Shams University, 2003 This thesis for M.Sc. degree had been approved by:

Name Signature

Prof. Dr. Abdel Mohsen Al-Mongy

Irrigation and Hydraulics Department, Faculty of Engineering, Ain Shams University.

Prof. Dr. Abdallah Bazaraa

Irrigation and Hydraulics Department, Faculty of Engineering, Cairo University.

Prof. Dr. Ayman George Awadallah

Civil Engineering Department, Faculty of Engineering, Fayoum University.

Dr. Mohamed Abdel Hamid Gad

Irrigation and Hydraulics Department, Faculty of Engineering, Ain Shams University.

Date: 16/01/2016

DEDICATION

I wish to dedicate this work to who patiently supported me throughout all stages of preparing it,

TO

MY WIFE

STATEMENT

This dissertation is submitted to Ain Shams University, Faculty of

Engineering for the degree of M.Sc. in Civil Engineering. The work

included in this thesis was carried out by the author in the department

of Irrigation and Hydraulics, Faculty of Engineering, Ain Shams

University.

No part of the thesis has been submitted for a degree or qualification at

any other University or Institution. The candidate confirms that the

work submitted is his own and that appropriate credit has been given

where reference has been made to the work of others.

Remah Farid Mohamed Ali Foda

Signature

Date: 16 January 2016

ACKNOWLEDGMENT

I'm deeply grateful to my supervisors **Dr. Mohamed Abdel Hamid Gad** and **Prof. Dr. Ayman George Awadallah**, for their guidance,
faithful supervision, helpful suggestions, great support, cooperation and
help in the model building and thesis preparation.

RESEARCHER DATA

Name : Remah Farid Mohamed Ali Foda

Date of birth : 25/03/1981

Place of birth : Cairo - Egypt

Last academic degree : Bachelor of Science

Field of specialization : Civil Engineering

University issued the degree : Ain Shams University

Date of issued degree : June 2003

Current job : Environmental Engineer at Dar

Al Handasah Consultants

THESIS SUMMARY

Rainfall-runoff modeling is one of the most important engineering applications in hydrology, in which the process of transforming rainfall hyetograph into a runoff hydrograph is simulated.

The majority of commonly used rainfall-runoff models are not capable of incorporating spatially distributed rainfall and other hydrological data which became more available through satellite imaging and rainfall radar scan. Therefore, development of advanced hydrologic models adopting spatially variable input is considered highly desirable.

In this research, a GIS based rainfall-runoff model was developed with advanced capabilities including calculation of infiltration losses incorporating the spatiotemporal variability of it, implementing spatially distributed rainfall data (e.g. rainfall grids) as input to the model, performing the excess rainfall-runoff transformation using an advanced grid-based computation algorithm for spatially varied hydraulic radius calculation and implementation of flow path response functions for runoff flow routing, and the capability of simulating any number of watersheds simultaneously to reduce the hydrologic design time.

Previous research work in rainfall-runoff modeling was reviewed with special attention to the theories related to grid-based travel time calculations and runoff flow routing.

A custom Visual Basic (VB) code was developed under the environment of Esri ArcGIS software constituting four main modules

for a) geomorphologic analysis, b) rainfall input processing and

precipitation loss calculation, c) grid-based flow velocity calculation,

and d) runoff flow routing and hydrograph generation. The developed

model included custom VB modules developed to perform hydrologic

calculations by implementing various theoretical formulas adopted for

use in the model, in addition to several standard functions already

available in ArcGIS software.

The model was tested, calibrated, and validated using the recorded

rainfall and runoff data of two case studies. The first was Walnut Gulch

Experimental Watershed (WGEW) encompassing about 150 square

kilometers in the semi-arid region of southeastern Arizona in USA; and

the second was Wadi Sudr Experimental Watershed (Egypt) of about

380 square kilometers.

The model was also applied in a hypothetical engineering design case,

in eastern desert of Egypt, in order to present various model capabilities

and test its performance.

Research conclusions were presented and recommendations were

provided for future research work.

Key words:

rainfall - runoff - modelling - watershed - arid - GIS

Supervisors

Dr. Mohamed Abdel Hamid Gad

Prof. Dr. Ayman George Awadallah

TABLE OF CONTENTS

CHA	APT	ER 1 – INTRODUCTION	1
1.	.1.	General	1
1.	.2.	Problem Statement	2
1.	.3.	Research Objective	3
1.	.4.	Thesis Layout	4
CHA	APT	ER 2 – LITERATURE REVIEW	6
2.	.1.	Introduction	6
2.	.2.	Research Work	6
2.	.3.	Summary	.21
CHA	APT	ER 3 – MODEL CONSTRUCTION	.23
3.	.1.	General	.23
3.	.2.	Model Schematic Flow Diagram	.23
	3.2	2.1. Geomorphologic Analysis Module	24
	3.2	2.2. Precipitation Loss Calculation Module	33
	3.2	2.3. Flow Velocity Calculation Module	44
	3.2	2.4. Runoff Flow Routing and Hydrograph Generation Module	49
CHA	APT	ER 4 – DATA COLLECTION AND PRE-PROCESSING	57
4.	.1.	General	.57
4.	.2.	Study Area	.57

4.3.	Watershed Instrumentation	59
4.4.	Watershed Topography	61
4.5.	Watershed Geology and Soils	62
4.6.	Watershed Vegetation	67
4.7.	Watershed Climate	70
4.8.	Precipitation Data	73
4.9.	Runoff Flow Data	81
НАРТ	TER 5 – MODEL CALIBRATION AND VALIDATION.	87
5.1.	General	87
5.2.	Model Sensitivity Analysis	87
5.	2.1. Sensitivity to Dispersion Coefficient	87
5.	2.2. Sensitivity to Manning's Roughness and Hydraulic Radius Calculation Method	92
5.	2.3. Sensitivity to Precipitation Loss Parameters	98
5.3.	Case Study 1: Walnut Gulch Experimental Watershed	102
5.	3.1. Model Calibration	102
5.	3.2. Model Validation	120
5.4.	Case Study 2: Wadi Sudr Experimental Watershed	137
НАРТ	TER 6 – MODEL APPLICATION	143
6.1.	General	143
6.2.	Model Application Case Study	143
	4.4. 4.5. 4.6. 4.7. 4.8. 4.9. HAPT 5.1. 5.2. 5.3. 5.4. HAPT 6.1.	4.4. Watershed Geology and Soils

CHAPT	APTER 7 – SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS156		
7.1.	General		
7.2.	Research Summary	156	
7.3.	Conclusions	159	
7.4.	Recommendations	162	
REFERENCES10		165	

LIST OF FIGURES

Figure 3-1: General Workflow Diagram of the Model	24
Figure 3-2: Workflow Diagram of Geomorphologic Analysis Module	25
Figure 3-3: Typical Process of Sink Filling and Peak Removal in a DEM (Source: ArcGIS 9.1 Desktop Help)	26
Figure 3-4: Typical Flow direction Notation (Source: ArcGIS 9.1 Desktop Help)	27
Figure 3-5: Example of Flow Direction Grid Calculation	27
Figure 3-6: Example of Flow Accumulation Grid Calculation	28
Figure 3-7: Example of Watershed Grid Calculation	30
Figure 3-8: Example of Slope Grid Calculation	32
Figure 3-9: Workflow Diagram of Precipitation Loss Calculation Module	33
Figure 3-10: Example of Rainfall Grid Stack Input	36
Figure 3-11: Example of Total Depth Grid with Standard Rainfall Distribution Input	37
Figure 3-12: Example of Rainfall Hyetograph Input	38
Figure 3-13: Example of Total Depth Value Plus Standard Rainfall Distribution Input	39
Figure 3-14: Example of CN grid calculation from Input CN Polygons	42

Figure 3-15:	Example of Excess Rainfall Calculation Process43
Figure 3-16:	Workflow Diagram of Flow Velocity Calculation Module
Figure 3-17:	Example of Hydraulic Radius Calculation Process47
Figure 3-18:	Example of Velocity Grid Calculation Process48
Figure 3-19:	Workflow Diagram of Runoff Flow Routing and Hydrograph Generation Module
Figure 3-20:	Example of " T_i " and " Π_i " Grids Calculation Process 53
Figure 3-21:	Relationship between Impulse Response Timeline and Overall Watershed Response Timeline
Figure 3-22:	Composition of Watershed Outflow Hydrograph56
Figure 4-1: I	Location of Walnut Gulch Experimental Watershed (Source: SWRC & WGEW Brochure, 2007)59
Figure 4-2: V	Walnut Gulch Watershed Instrumentation (Source: SWRC & WGEW Brochure, 2007)60
Figure 4-3: V	Walnut Gulch Watershed 30m Resolution DEM63
Figure 4-4: V	Walnut Gulch Watershed Calculated Slope Grid64
•	Walnut Gulch Watershed Streamline Order (Source: SWRC & WGEW Brochure, 2007)65
Figure 4-6: V	Walnut Gulch Watershed Geology (Source: Osterkamp, 2008)
Figure 4-7: V	Walnut Gulch Watershed Soils (Source: Osterkamp, 2008)

Figure 4-8: V	Walnut Gulch Watershed Vegetation Map (Source: Vegetation data, Walnut Gulch Experimental	
	Watershed, Arizona, United States, 2008)	69
Figure 4-9: (Climatic Characteristics of Walnut Gulch Watershed	71
	(Source: SWRC & WGEW Brochure, 2007)	/ 1
Figure 4-10:	Precipitation (mm) Storm Event August 27, 1982	
	(Source: SWRC & WGEW Brochure, 2007)	72
Figure 4-11:	Total Precipitation (mm) of August 1982 (Source:	
	SWRC & WGEW Brochure, 2007)	72
Figure 4-12:	Rain Gauges in Walnut Gulch Watershed	74
Figure 4-13:	Averaged Storm Hyetographs of the Two Selected	
	Events	75
Figure 4-14:	Sampled Rainfall Grids of First Event	77
Figure 4-15:	Sampled Rainfall Grids of Second Event	79
Figure 4-16:	Locations of the 11 Flumes on Large Watersheds of	
	WGEW	83
Figure 4-17:	Catchment Areas of the Selected Five Flumes	84
Figure 4-18:	Recorded Runoff Hydrographs of the Selected Five	
	Flumes in the First Event (July, 2012)	85
Figure 4-19:	Recorded Runoff Hydrographs of the Selected Five	
	Flumes in the Second Event (August, 2000)	86
Figure 5-1: C	Calculated Outlet Hydrographs for Single Cell at	
	Various Dispersion Coefficient Values	91

vi

Figure 5-2: Calculated Outlet Hydrographs at Various "n" Values with Two-predictor Hydraulic Radius Formula94
Figure 5-3: Calculated Outlet Hydrographs at Various "n" Values with Three-predictor Hydraulic Radius Formula95
Figure 5-4: Calculated Peak Flow at Various "n" Values with Both Hydraulic Radius Formulas
Figure 5-5: Calculated Time to Peak at Various "n" Values with Both Hydraulic Radius Formulas
Figure 5-6: Calculated Outlet Hydrographs at Various "CN" Values with a "λ" Value of 0.15
Figure 5-7: Calculated Outlet Hydrographs at Various "CN" Values with a "λ" Value of 0.10
Figure 5-8: Calculated Outlet Hydrographs at Various "CN" Values with a "λ" Value of 0.15
Figure 5-9: Calculated Outlet Hydrographs at Various "CN" Values with a "λ" Value of 0.20
Figure 5-10: Calculated Total Runoff Volume at Various "CN" and "λ" Values
Figure 5-11: Calculated Peak Flow at Various "CN" and "λ" Values
Figure 5-12: Adopted CN Map of WGEW in the Calibration Event . 107
Figure 5-13: Calibration Analysis Grids of Flume FL001
Figure 5-14: Calibration Analysis Grids of Flume FL006