

Faculty of Science

Microbiology Department

MICROBIOLOGICAL AND BIOCHEMICAL STUDIES ON THE PRODUCTION OF ISOFLAVONES

THESIS

For the Degree of Doctor of Philosophy of Science

(Microbiology)

 $\mathbf{B}\mathbf{y}$

Asmaa Ibrahim Mohamed El-Shazly

B.Sc. Microbiology & Chemistry, 2007 M. Sc. Microbiology, 2012

Faculty of Science
Ain Shams University
(2018)

Approval Sheet

MICROBIOLOGICAL AND BIOCHEMICAL STUDIES ON THE PRODUCTION OF ISOFLAVONES

THESIS

For the Degree of Doctor of Philosophy of Science (Microbiology)

By

Asmaa Ibrahim Mohamed El-Shazly B.Sc. Microbiology & Chemistry, 2007 M. Sc. Microbiology, 2012

> **Faculty of Science Ain Shams University** (2018)

Supervisors

Prof. Yousseria Mohamed Hassan Shetaia

Professor of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University.

Prof. Mohamed Abdel Fattah Mohamed Farid

Professor of Microbiology, Chemistry of Natural and Microbial Products, Department, National Research Centre.

Prof. Navera Ahmed Mohamed Abdel Wahed

Professor of Microbiology, Chemistry of Natural and Microbial Products Department, National Research Centre.

Ass. Research Prof. Azza Mohamed Noor El-Deen

Assistant Professor of Microbiology, Chemistry of Natural and Microbial Products Department, National Research Centre.

Lecturer Nevin Ahmed Ibrahim

Department, National Research Centre.

Lecturer of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University.

Examination Committee
Prof. Rawia Fathi Gamal
Professor of Microbiology, Microbiology Department, Faculty of Agriculture, Ain
Shams University.
Prof. Om Kolthoum Hassan El-Sayed Khattab
Professor of Microbiology, Microbiology Department, Faculty of Science, Helwan
University.
Prof. Yousseria Mohamed Hassan Shetaia
Professor of Microbiology, Microbiology Department, Faculty of Science, Ain
Shams University.
Prof. Mohamed Abdel Fattah Mohamed Farid

Professor of Microbiology, Chemistry of Natural and Microbial Products

قَالُوا سُبْحَانَكَ لَا عِلْمَ لَنَا إِلَّا عَلَمُ لَنَا إِلَّا عَلَمُ لَنَا الْعَلِمُ مَا عَلَمْتَنَا إِنَّكَ أَنْتَ الْعَلِمُ الْحَكِمُ الْحَكِمُ الْحَكِمُ الْحَكِمُ

إسورة البقرة، الآيه ٢٦٩

صَّالُ فِي اللَّهِ اللَّهُ اللَّا اللَّهُ اللَّا اللَّا اللَّا اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ الللَّهُ اللَّا

Acknowledgement

Firstly, and forever, Thanks to ALLAH, who give me everything in my life, and I supplicate to Allah to make my life in a perfect way.

I wish to express my appreciation to Prof. Dr. Yousseria Mohamed Hassan Shetaia, Microbiology Department, Faculty of Science, Ain Shams University, for her much valued guidance, for her detailed review, constructive criticism and excellent advice during the preparation of this thesis.

I am heartily thankful to my supervisor, Prof. Dr. Mohamed Farid, Chemistry of Natural and Microbial Products Department, National Research Center (NRC) for suggesting the work, continuous help which made the accomplishment of this work possible, much valued guidance, helpful advice, encouragement and for his supervision from the initial to the final level which enabled me to develop an understanding of the subject.

I warmly thank Prof. Dr. Nayera Ahmed Abdel Wahed, Chemistry of Natural and Microbial Products Department, National Research Center (NRC) for her valuable advice and friendly help.

I warmly thank Ass. Research Prof. **Azza Mohamed Noor El-Deen**, Chemistry of Natural and Microbial Products Department, National Research Center (NRC) for her valuable advice and friendly help.

I warmly thank Lecturer **Nevin Ahmed Ibrahim**, Chemistry of Natural and Microbial Products Department, National Research Center (NRC) for her valuable advice and friendly help.

I warmly thank Ass. Research Prof. **Ahmed Atef**, Chemistry of Natural and Microbial Products Department, National Research Center (NRC) for his valuable advice and friendly help.

Thanks, are also extended to the members of the **Department of** Chemistry of Natural and Microbial Products, NRC, for their cooperation and help which enable this work to be accomplished and I offer my regards and blessings to all of those who supported me in any respect during the completion of the work.

Dedication

Family isn't just names or blood. It's the people in your life who want you in theirs. The ones who accept you for who you are.

The ones who would do anything to see your smile and who love you no matter what.

I am deeply and forever indebted to my family for their love, support and encouragement throughout my entire life.

I thank Allah for giving me an amazing husband like mine and also, I know that I need to thanks my husband for giving me an amazing life.

For my friends: thanks for being there for me

Thanks, my husband, my Layla, my dad, my mom, my sister, my brother and my friends for being the reason I smile.

Contents

1. Introduction	1
Aim of work	3
Plan of work	4
Abstract	5
2. Review of literature	7
2.1. Chemical structure of flavonoids	7
2.2. Soy isoflavones	8
2.3. Microbial transformation of soy isoflavones by fermentation technique	11
Statistical optimization techniques	16
2.4. Extraction of isoflavones	16
2.5. HPLC Analysis of soy isoflavones	19
2.6. Applications of daidzein and genistein	20
2.6.1. Estrogenic activity, biological and clinical effects	20
2.6.2. Soy isoflavones and post-menopausal problems	21
2.6.2.1. Osteoporosis	21
2.6.2.2. Cognitive function	21
2.6.2.3. Vasomotor symptoms	22
2.6.3. Hypocholesterolemic effect of soy isoflavones	23
2.6.4. Genistein as an anti-coagulant	24
2.6.5. Soy isoflavones as a cancer chemopreventive agent	24
2.6.6. Antioxidant activity of soy isoflavones	25
2.7.7. Soy isoflavones as anti-aging agents	26

2.7.8. Soy isoflavones and their photoprotective effects	27
2.7.9. Anti-viral activity of soy isoflavones	28
Antiviral activity of chongkukjang against influenza A virus	28
2.7.10. Antifungal activity of soybean isoflavones	29
3. Materials and Methods	30
3.1. Materials	30
3.1.1. Microorganisms	30
3.1.2. Chemicals	30
3.1.3. Media	31
3.1.3. 1. Isolation media	31
3.1.3. 2. Screening media	31
3.1.3.3. Cultivation media	32
3.1.4. Buffers	32
3.1.4.1. Sodium hydrogen phosphate buffer	32
3.1.4.2. Citrate-Phosphate buffer	33
3.1.4.3. AE buffer	33
3.1.5. Reversed-phase HPLC apparatus	33
3.2. Methods	33
3.2. 1. Isolation of bacterial and fungal isolates	33
3.2.2. Defatting of soybean flour	33
3.2.3. Screening of bacterial and fungal isolates for the transformation of soy glucosides into soy aglycones	34
3.2. 4. Determination of pH	35
3.2. 5. Assessment of β -glucosidase activity	35
3.2. 5. 1. Assessment of extracellular β- glucosidase activity	35
3.2. 5. 2. Assessment of cell-bound β - glucosidase activity	36
3.2. 6. Extraction of isoflavones	36

3.2.7. Assessment of the antioxidant activity using DPPH free radical-scavenging assay	36
3.2. 8. HPLC analysis of isoflavones	37
3.2. 9. Calibration curves of isoflavone standard	37
3.2. 10. Identification of the most potent bacterial isolate	38
3.2. 10. 1. Morphological characterization	38
3.2. 10. 2. Molecular approach	38
3.2.11. Optimization of daidzin and genistin transformation by <i>B. licheniformis</i> NRC24 using one-factor-at-a time method.	40
3.2.11.1. Nutritional factors affecting daidzin and genistin transformation	40
3.2. 11.1.1. Effect of different concentrations of defatted soybean flour on daidzin and genistin transformation	40
3.2.11.1.2. Effect of different added inducers on daidzin and genistin transformation	40
3.2.11.2. Environmental parameters affecting daidzin and genistin transformation	41
3.2.11.2.1. Effect of incubation period	41
3.2.11.2.2. Effect of medium volume	41
3.2.11.2.3. Effect of incubation temperature	41
3.2.11.2.4. Effect of inoculum volume	41
3.2.11.2.5. Effect of initial pH value	42
3.2.11.2.6. Effect of agitation speeds	42
3.2.11.3. Statistical analysis	42
3.2.12. Optimization of daidzin and genistin transformation using a Box and Behnken design	42
3.2.13. Some medicinal applications of fermented soy flour extract	44
3.2.13.1. Assessment of antibacterial activity of fermented and unfermented soybean flour extracts	44

3.2.13.2. Assessment of antifungal activity of fermented and unfermented soybean flour extracts	44
3.2.13.3. Assessment of the cytotoxicity of fermented and unfermented soybean flour extracts against mammalian cell lines	45
3.2.13.4. Assessment of antiviral activity of fermented and unfermented soybean extracts	46
3.2.13.4.1 Assessment of antiviral activity of fermented and unfermented soybean extracts against influenza virus	46
3.2.13.4.2 Assessment of antiviral activity of fermented and unfermented soybean extracts against herpes simplex virus	47
3.2.13.4.3 Assessment of antiviral activity of fermented and unfermented soybean extract against rotavirus SA11	47
3.2.13.5. Assessment of anti-cancer activity of fermented and unfermented soybean extracts using MTT cytotoxicity assay	48
4. Results	50
4.1. Isolation of microorganisms	50
4.2. Screening of bacterial and fungal isolates for the production of β-glucosidase and the transformation of soy glucosides into soy aglycones.	51
4.3. Screening with different concentrations of soybean flour	68
4.4. Identification of the most potent bacterial isolate	70
4.4.1. Morphological characterization	71
4.4.2. Molecular characterization	71
4.5. Optimization of daidzin and genistin transformation by <i>B. licheniformis</i> NRC24	74
4.5.1. Effect of different concentrations of defatted soybean flour	74
4.5.2. Effect of incubation time	77
4.5.3. Effect of incubation temperature	80
4.5.4. Effect of medium volume	82
4.5.5. Effect of inoculum volume	84
4.5.6. Effect of initial pH value	86
4.5.7. Effect of agitation speeds	88

4.5.8. Effect of supplementation of fermented soybean flour with different inducers	90
4.6. Optimization of culture conditions for fermentation of soy flour using <i>B. licheniformis</i> NRC24 by Box-Behnken design	92
4.7. Some medicinal applications of fermented and unfermented soybean flour extracts	122
4.7.1. Assessment of antibacterial and antifungal activity of fermented and unfermented soybean flour extracts	122
4.7.2. Assessment of the cytotoxicity of fermented and unfermented soybean flour extracts against mammalian cell lines	124
4.7.3. Assessment of antiviral activity of fermented and unfermented soybean extracts	127
4.7.3.1. Assessment of antiviral activity of fermented and unfermented soybean flour extracts against the avian influenza A Virus	127
4.7.3.2. Assessment of antiviral activity of fermented and unfermented soybean flour extracts against the herpes simplex virus	128
4.7.3.3. Assessment of fermented and unfermented soybean flour extracts against rotavirus SA11	129
4.7.4. Assessment of anti-tumor activity of fermented and unfermented soybean flour extracts	130
4.7.4.1. Assessment of anti-tumor activity of fermented and unfermented soybean flour extracts against colon cancer	130
4.7.4.2. Assessment of anti-tumor activity of fermented and unfermented soybean flour extracts against breast cancer	132
4.7.4.3. Assessment of anti-tumor activity of fermented and unfermented soybean flour extracts against prostate cancer	134
Discussion	137
Summary	156
References	159

List of Tables

Table, (1): Summary of commonly deployed procedures used	17
by various authors for extraction of isoflavones from soybean	
samples	
Table, (2): Determination of isoflavones in soybean and	19
soybean products	
Table, (3): Variables used in the Box-Behnken design	43
Table, (4): Isolation of bacterial and fungal isolates from	50
different Egyptian soil samples	
Table (5): Quantitative assessment of daidzin and genistin	53
transformation using the selected isolated bacterial and fungal	
isolates	
Table, (6): ANOVA of the changes of aglycone content in the	66
fermented soy flour using the bacterial and fungal isolates	
Table, (7): Effect of different concentrations of soybean flour on	69
the transformation of daidzin and genistin using the selected	
isolates (No. 3& 8)	
Table, (8): Effect of different concentrations of defatted soybean	75
flour on daidzin and genistin transformation using B.	
licheniformis NRC24	
Table, (9): ANOVA of the changes of aglycones content in he	76
fermented soy flour using B. licheniformis NRC24	
Table, (10): Effect of incubation time on daidzin and genistin	78
transformation using B. licheniformis NRC24	
Table, (11): ANOVA of the changes of aglycone content in the	79
fermented soy flour using B. licheniformis NRC24	
Table, (12): Effect of incubation temperature on daidzin and	80
genistin transformation using <i>B. licheniformis</i> NRC24	
Table, (13): ANOVA of the changes of the aglycones content in	81
the fermented soy flour using <i>B. licheniformis</i> NRC24	
Table, (14): Effect of medium volume on daidzin and genistin	82
transformation using B. licheniformis NRC24	
Table, (15): ANOVA of the changes of aglycones content in the	83
fermented soy flour using B. licheniformis NRC24	
Table, (16): Effect of inoculum volume on daidzin and genistin	84
transformation using B. licheniformis NRC24	
Table, (17): ANOVA of the changes of aglycones content in the	85
fermented soy flour using B. licheniformis NRC24	
Table, (18): Effect of initial pH value on daidzin and genistin	86
transformation using <i>B. licheniformis</i> NRC24	

Table, (19): ANOVA of the changes of aglycones content in the	87
fermented soy flour using <i>B. licheniformis</i> NRC24	
Table, (20): Effect of agitation speed on daidzin and genistin	88
transformation using B. licheniformis NRC24	
Table, (21): ANOVA of the changes aglycones content in the	89
fermented soy flour using <i>B. licheniformis</i> NRC24	
Table, (22): Effect of different inducers on daidzin and genistin	91
transformation using B. licheniformis NRC24	
Table, (23): Box-Behnken design matrix including β -	94
glucosidase activity, daidzein and genistein concentrations	
using B. licheniformis NRC24	
Table, (24): Analysis of variance of the Box-Behnken	96
experimental design for assessment of β -glucosidase	
production.	
Table, (25): Analysis of variance of the Box-Behnken	104
experimental design for assessment of daidzein production	
Table, (26): Analysis of variance of the Box-Behnken	112
experimental design for assessment of genistein production	
Table, (27): Assessment of antimicrobial activity (I.Z. mm) of	123
fermented and unfermented soybean flour extracts	
Table, (28): Assessment of the cytotoxicity of fermented and	125
unfermented soybean flour extracts against mammalian cell	
lines	
Table, (29): Assessment of antiviral activity of fermented and	127
unfermented soybean extracts against the avian influenza A	
Virus (M7217B) 2013(H5)	
Table, (30): Assessment of antiviral activity of fermented and	128
unfermented soybean flour extracts against the herpes simplex	
virus	
Table, (31): Assessment of antiviral activity B. licheniformis	129
NRC24 fermented soybean extract against rotavirus SA11	
Table, (32): Assessment of anti-tumor activity of fermented and	130
unfermented soybean flour extracts against colon cancer	
Table, (33): Assessment of anti-tumor activity of fermented and	132
unfermented soybean flour extracts against breast cancer	
Table, (34): Assessment of anti-tumor activity of fermented and	134
unfermented soybean flour extracts against prostate cancer	

List of Figures

Fig. (1): Nuclear structure of flavonoids	8
Fig. (2): Chemical structures of isoflavones	9
Fig. (3): Free radical DPPH scavenging activity (%) of unfermented and fermented soybean by bacterial and fungal isolates.	52
Fig. (4): HPLC chromatogram showing the retention times of standard daidzein (D) followed by genistein (G)	55
Fig. (5): HPLC chromatogram showing the retention times of daidzein and genistein for unfermented Soybean flour	55
Fig. (6): HPLC chromatogram showing the retention times of daidzein and genistein for soybean flour fermented with bacterial isolate No. 1	55
Fig. (7): HPLC chromatogram showing the retention times of daidzein and genistein for soybean flour fermented with bacterial isolate No.2	56
Fig. (8): HPLC chromatogram showing the retention time of daidzein and genistein for soybean flour fermented with bacterial isolate No. 3	56
Fig (9): HPLC chromatogram showing the retention time of daidzein and genistein for soybean flour fermented with bacterial isolate No. 4	57
Fig (10): HPLC chromatogram showing the retention time of daidzein and genistein for soybean flour fermented with bacterial isolate No. 5	57
Fig (11): HPLC chromatogram showing the retention time of daidzein and genistein for soybean flour fermented with bacterial isolate No.6	58
Fig. (12): HPLC chromatogram showing the retention time of daidzein and genistein for soybean flour fermented with bacterial isolate No. 7	58
Fig. (13): HPLC chromatogram showing the retention time of daidzein and genistein for soybean flour fermented with bacterial isolate No. 8	59

- Fig. (14): HPLC chromatogram showing the retention time of 59 daidzein and genistein for soybean flour fermented with bacterial isolate No. 9
- Fig. (15): HPLC chromatogram showing the retention time of 60 daidzein and genistein for soybean flour fermented with bacterial isolate No. 10
- Fig. (16): HPLC chromatogram showing the retention time of daidzein and genistein for soybean flour fermented with fungal isolate No.1 after 4 days at 28°C.
- Fig. (17): HPLC chromatogram showing the retention time of 61 daidzein and genistein for soybean flour fermented with fungal isolate No. 2
- Fig. (18): HPLC chromatogram showing the retention time of 61 daidzein and genistein for soybean flour fermented with fungal isolate No. 3
- Fig. (19): HPLC chromatogram showing the retention time of 62 daidzein and genistein for soybean flour fermented with fungal isolate No. 4
- Fig. (20): HPLC chromatogram showing the retention time of 62 daidzein and genistein for soybean flour fermented with fungal isolate No. 5
- Fig. (21): HPLC chromatogram showing the retention time of 62 daidzein and genistein for soybean flour fermented with fungal isolate No. 6
- Fig. (22): HPLC chromatogram showing the retention time of 63 daidzein and genistein for soybean flour fermented with fungal isolate No. 7
- Fig. (23): HPLC chromatogram showing the retention time of 63 daidzein and genistein for soybean flour fermented with fungal isolate No. 8
- Fig. (24): HPLC chromatogram showing the retention time of 64 daidzein and genistein for soybean flour fermented with fungal isolate No. 9
- Fig. (25): HPLC chromatogram showing the retention time of 64 daidzein and genistein for soybean flour fermented with fungal isolate No. 10

Fig. (26): HPLC chromatogram showing the retention time of daidzein and genistein for soybean flour fermented with fungal isolate No. 11	65
Fig. (27): HPLC chromatogram showing the retention time of daidzein and genistein for soybean flour fermented with fungal isolate No. 12	65
Figure (28): HPLC chromatogram showing the retention time of daidzein and genistein for soybean flour fermented with fungal isolate No. 13	65
Fig. (29): Changes in isoflavone aglycones content at 24 h and 48 hr. submerged fermentation of defatted soybean flour by bacterial isolate No.3 and 8.	69
Fig. (30): Gram staining of bacterial isolate No.3	70
Figure (31): Nucleotide sequence of 16S rDNA from <i>Bacillus licheniformis</i> RC24	72
Figure (32): Phylogentic tree showing the relation of <i>Bacillus licheniformis</i> NRC24 with other species	73
Fig. (33): (a) Plot of experimental values versus predicted values of β -glucosidase activity	97
Fig. (34): Response surface plot of β -glucosidase activity	99
Fig. (35) (a) Plot of experimental values versus predicted values of daidzein concentration	105
Fig. (36): Response surface plot of daidzin transformation	107
Fig. (37): (a) Plot of experimental versus predicted values of genistein concentration	113
Fig. (38): Response surface plot of genistin transformation	115
Fig. (39): (a) correlation plot of β -glucosidase daidzin and genistin	119
Fig (40): plot of % cytotoxicity on MDCK cells, Vero cells, and MA104 cells, versus sample concentration unfermented soybean flour extract and fermented soybean flour extract, respectively.	126
Fig. (41): Cytotoxicity of unfermented soybean flour extract on colon cancer HCT-116 cells	131
Fig. (42): Cytotoxicity of fermented soybean flour extract on colon cancer HCT-116 cells	131