Statistical Analysis of Fetal Echocardiography Clinic at Fetal Care Unit Ain Shams Maternity Hospital over a 12-month period

ThesisSubmitted for partial fulfillment of Master Degree in Pediatrics

By Nada Ayman Gad M.B., B.CH. (2011)

Under supervision of

Prof. Dr.

Ahmed Ramy Mohamed Ramy Ahmed Ramy

Professor of Obstetrics and Gynecology Faculty of Medicine – Ain Shams University

Prof. Dr.

Nevin Mohamed Mamdouh Habeeb

Professor of Pediatrics Faculty of Medicine – Ain Shams University

Dr.

Marwa Moustapha Attia Al-Fahham

Lecturer of Pediatrics
Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University 2016

Acknowledgement

First of all, I'd like to thank **Allah** to whom I relate any success or achievement I've done in my life.

I would like to thank **Prof. Dr. Ahmed Ramy Mohamed Ramy Ahmed Ramy**, Professor of Obstetrics and GynecologyFaculty of Medicine – Ain Shams University, for his sincere efforts and fruitful encouragement.

I would like to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Nevin Mohamed Mamdouh Habeeb**, Professor of Pediatrics, Faculty of Medicine – Ain Shams University, for her meticulous supervision, kind guidance, valuable instructions, generous help and total understanding.

I am thankful to **Dr. Marwa Moustapha Attia Al-Fahham**, Lecturer of Pediatrics, Faculty of Medicine – Ain Shams University, for her great help, support and guidance.

Special thanks to **Prof. Dr. Hesham Ahmed Ibrahim Shalaby**, Professor of Pediatrics, National Center for Radiation Research and Technology – Atomic Energy Authority, for his great help, support and kindness.

Last but not least, I would like to express my deepest gratitude to the place which I've always considered as my second home, the Faculty of Medicine – Ain Shams University.

Also I would like to thank The National Center for Radiation Research and Technology – Egyptian Atomic Energy Authority, my place of work for giving me the opportunity to accomplish this work and all my colleagues for their cooperation.

Finally, I would like to thank my whole family and specially my parents who stood behind me to finish this work and for their great and much appreciated support through all my life, and very special thanks to my dear husband for his support and patience.

List of Contents

Title	Page No.
List of abbreviations	iii
List of tables	v
List of figures	vii
Introduction	1
Aim of work	3
Review of literature	
Fetal echocardiography	5
Impact of early diagnosis of fetal cardiac abnormalities	25
Patients and methods	29
Results	33
Discussion	55
Summary	81
Conclusion	87
Recommendations	89
References	91
Arabic summary	

List of abbreviations

Ao Aorta

Ao root Aortic root

AscAo Ascending aorta
ASD Atrial septal defect

AV Atrioventricular

AVSD Atrioventricular septal defect

BCEE Basic cardiac echocardiographic examination

CF Color flow

CHB Congenital heart block
 CHD Congenital heart disease
 CTA Conotruncal abnormalities
 CTAR Cardio-thoracic area ratio

DA Ductus arteriosisDescAo Descending aortaDM Diabetes mellitus

ECEE Extended cardiac echocardiographic examination

FE Fetal echocardiography

ICSI Intra-cytoplasmic sperm injection

IUFD Intrauterine fetal death

IVC Inferior vena cavaIVF In-vitro fertilization

IVS Inter-ventricular septum

LA Left atrium

LMWT Left myocardial wall thickness

LV Left ventricle

NE Neonatal echocardiography

OTV Outflow tract view

PA Pulmonary artery **PKU** Phenyl ketonuria PV Pulmonary valbe

RA Right atrium

RMWT Right myocardial wall thickness

RPA Right pulmonary artery

 \mathbf{RV} Right ventricle

Systemic lupus erythromatosus SLE

SVC Superior vena cava

SVT Supra ventricular tachycardia **TGA** Transposition of great arteries

Trachea Tra

TCD Total cardiac dimension **VSD** Ventricular septal defect

3 vessels-trachea view **3VTV**

List of Tables

Table No.	Title	Page No.
(1)	Examples of indications for FE examination	8
(2)	Important components of the FE	13
(3)	Descriptive analysis of the personal data of the studied group	35
(4)	Descriptive analysis of the possible risk factors for CHD in the studied group	36
(5)	Descriptive analysis of the indications for FE	37
(6)	Descriptive data of the adequacy of the views of FE and causes of inadequacy	38
(7)	Cases of CHD revealed by FE during our study period	39
(8)	Descriptive data of FE results	39
(9)	Descriptive data of the need and cause for follow up, urgent action taken after FE was done, specific recommendations, time of delivery	40
(10)	Comparison between positive and negative FE results regarding the personal data	41
(11)	Comparison between positive and negative FE regarding the possible risk factors	42
(12)	Comparison between positive and negative FE results as regards the indications for FE	44
(13)	Comparison between positive and negative FE results as regards the adequacy of the views of FE and causes of inadequacy	48

Table No.	Title	Page No.
(14)	Fate of CHDs diagnosed by FE	50
(15)	Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of FE as regards the diagnoses of fetal heart abnormalities after exclusion of cases that were cured intrauterine, or still born, or terminated or lost to follow up.	52

List of Figures

Fig. No.	Title	Page No.
(1)	Standardized transverse scanning planes for FE include an assessment of the 4-chamber view (1), arterial outflow tracts (2 and 3), and the 3-vessel and trachea view (4)	15
(2)	Sagittal views of the superior and inferior venae cavae (1), aortic arch (2), and ductal arch (3). The scan angle between the ductal arch and thoracic aorta ranges between 10° and 19° during pregnancy, as illustrated by the 4-chamber view diagram	18
(3)	Low and high short-axis views of the fetal heart	20
(4)	GE Voluson E6 ultrasound system machine	31
(5)	Comparison between positive and negative FE results regarding the hypertension as an indication for FE, showing a statistical significant difference	46
(6)	Comparison between positive and negative FE results regarding the irregular fetal heart beats as an indication for FE, showing a statistical high significant difference.	47
(7)	Comparison between positive and negative FE results regarding the abnormal cardiac configuration by obstetric ultrasound as an indication for referral for FE, showing a statistical high significant difference	47

Introduction

Congenital Heart Disease (CHD) is defined as an abnormal structure or cardio-circulatory function that occurs from birth, even if it was diagnosed later in life (*Friedman*, 1997). It differs in severity, starting from communications between cavities that regress spontaneously up to major malformations that may need many interventions, surgical or catheterization. It can lead to intrauterine, childhood or adulthood death (*Go et al.*, 2013). A contemporary definition of critical CHD is one which requires urgent intervention/treatment in the first 24 h of life to prevent death. Such cardiac intervention may be not only life saving for the infant but also decrease subsequent morbidity (*Donofrio et al.*, 2015).

CHDs are one of the most common forms of congenital anomalies found in humans. Their approximate incidence is about 6 in 1,000 live births and about 8 to 10 in 1,000 pregnancies (*Rodger*, 2010). The World Health Organization (WHO) stated that cardiac defects account for 42% of infant deaths and have become the main cause of infant mortality (*Rosano et al.*, 2000).

The first experience with visualization of the fetal heart was reported in 1972 by Winsberg (*Winsberg*, 1972). Since then, improvements in two-dimensional image resolution and the

implementation of Doppler techniques have made it possible to examine the human fetal heart without invasion and to detect normal and abnormal cardiovascular physiology (*Reed*, 1989). To date, nearly all forms of structural CHD have been determined in utero using echocardiographic techniques. The large collective experience with fetal echocardiography (FE) has lead to valuable information about the presentation of heart disease in utero, the non-invasive detection of cardiac defects in the fetus, and the indications and limitations of FE. Therefore, the cardiologist now is capable of extending the care of the child with cardiac disease to include the fetus, allowing in utero diagnosis of cardiovascular disease and, sometimes, providing fetal therapy for certain disease states (*Snider et al.*, 1997).

Aim of Work

The aim of this study was to evaluate the FE as an emerging diagnostic tool for early detection of CHD.