IMMUNOHISTOCHEMICAL EXPRESSION OF CD133 STEM CELL MARKER IN PRIMARY OSTEOSARCOMA

Thesis
Submitted for Partial Fulfillment
Of Master Degree in Pathology

By

Rasha Farouk Bakry

M.B.B.CH, Faculty of Medicine - Ain Shams University Resident At Ahmed Maher Teaching Hospital

> Supervised By

Prof. Dr. Nahed Samy Khamis

Professor and Head of Pathology Department Faculty of Medicine - Ain Shams University

Prof. Dr.Manal Mohamed El Mahdy

Professor of Pathology Faculty of Medicine - Ain Shams University

Dr.Nermeen Salah Youssef

Assistant professor of Pathology Faculty of Medicine -Ain Shams University

Faculty of Medicine Ain -Shams University

Acknowledgement

First, thanks are all directed to **ALLAH** for helping me to complete this research.

I would like to express my deepest gratitude to **Pro. Dr.**Nahed Samy Khamis, Professor and Head of Pathology

Department, Faculty of Medicine, Ain Shamas University,

for her great support and continuous encouragement through

the whole work under her guidance and supervision.

Also, I am deeply indebted to Pro. **Dr. Manal Mohamed El Mahdy**, Professor of pathology, Faculty of medicine, Ain shams University, for her great effort, support and guidance throughout the whole work.

My sincere regards and gratefulness for **Dr. Nermeen** Salah Youssef, Assistant professor of pathology, Faculty of medicine, Ain shams University, for her kind care, unlimited help and her great effort throughout this work.

Also, I would like to express my deep gratitude and thanks to my husband, my daughters and my mother who helped me a lot to complete this work.

List of Abbreviations

ABC ATP-binding cassette trasporter

AC133 Antibody clone 133

AIP Aptaf-1 interacting protein

AJCC American Joint Committee on Cancer Staging

Aptaf-1 Apoptotic protease activating factor 1

ATP Adenosine triphosphate

Bcl2 B-cell lymphoma

Bcl-XL B-cell lymphoma-extra large

BCRP Breast cancer resistance protein

CD133 Cluster of Differentiation molecule 133

CIS Cisplatin chemotherapeutic agent

CSCs Cancer stem cells

CT Computed Tomography

CXCR4 C-X-C chemokine receptor type 4 stem cell marker

DAB Diaminobenzidine

DNA Deoxyribonucleic acid

DOX Doxorubicin chemotherapeutic agent

EpCAM Epithelial cell adhesion molecule

ES Embryonic stem cell

ESA Epithelial specific antigen molecule

FC Flow cytometry

FLIP FLICE-inhibitory proteins

GBM Glioblastoma multiforme

H&E Hematoxylin and Eosin stain

HS Highly significant

IAP Inhibitors of apoptosis proteins

IF Immunofluorescence

MRI Magnetic Resonance Imaging

MSC Mesenchymal stem cell

MTX Methotrexate chemotherapeutic agent

NS Non significant

OS Osteosarcma

PBS Phosphate - buffered saline

PET Positron Emission Tomography

PFS Progression-free survival

Pgp P-glycoprotein

RB1 Retinoblastoma 1 gene

RNA Ribonucleic acid

ROC Receiver operating characteristic curve

RT-PCR Real-time polymerase chain reaction

S Significant

Saos2 Sarcoma osteogenic cell line 2

SD Standard deviation

SEER Surveillance, Epidemiology and End Results

SP Side population cell

TNI Tumor Necrosis Index

TNM Tumor size, Lymph node and Metastasis Staging

WHO World Health Organization

Contents

P	age	,
_	ugt	,

Introduction	1
-Aim of the work	4
-Review of Literature	
Chapter 1: Normal anatomy	5
Chapter 2: Osteosarcoma	13
Chapter 3: Cancer stem cells	56
Chapter 4: CD133	65
-Material and methods	70
-Results	78
-Discussion	119
-Conclusion	130
-Recommendation	131
-Summary	132
-References	134
-Arabic summary.	

List of Tables

Table NO.	Title	Page
Table (1)	Enneking's surgical staging system of bone sarcoma.	45
Table (2)	TNM Classification of bone tumors.	46
Table (3)	Enneking's criteria for surgical margins in musculoskeletal tumors.	50
Table (4)	Demographic & Descriptive analysis for osteosarcoma cases.	78,79
Table (5)	Frequency of different age groups within studied osteosarcoma cases.	80
Table (6)	Comparison between both groups as regarding the mean age.	86
Table (7)	Correlation between patients' age and CD133 in each group.	87
Table (8)	Difference between the two groups regarding sex.	87
Table (9)	Correlation between sex and CD133 expression in each group.	88
Table (10)	Correlation between histopathological types of osteosarcoma and CD133 in each group.	90
Table (11)	Difference between the two groups regarding tumor site.	92
Table (12)	Correlation between tumor site and CD133 in each group.	93
Table (13)	Difference between the two groups regarding tumor grade.	95
Table (14)	Correlation between tumor grade and CD133 expression in each group.	96

Table (15)	Difference between the two groups regarding TNM stage of surgically resected OS	98
Table (16)	Correlation between pTNM stage of surgically resected OS cases and CD133 expression in each group	98 & 99
Table (17)	Difference between the two groups regarding AJCC tumor stage	99
Table (18)	Correlation between AJCC staging and CD133 expression in each group	100
Table (19)	Difference between the two groups regarding margin, infiltration of the surrounding soft tissue and CD133 expression	101
Table (20)	Correlation between CD133 expression and margin and infiltration of the surrounding soft tissue in group 1	102
Table (21)	Correlation between CD133 expression and surgical resection margins in group 2	102
Table (22)	Comparison between both groups as regarding the mean of TNI	102
Table (23)	Correlation between TNI and mean of CD133 expression for all patients	103
Table (24)	Correlation between TNI and mean of CD133 expression in group 1	103
Table (25)	Correlation between TNI and median of CD133 expression in group 1	104

List of Figures

Figure No.	Title	Page
Figure (1)	Important anatomic landmarks for tumor	6
	diagnosis in long bones	
Figure (2)	Cross section of mature bone	7
Figure (3)	Diagram demonstrates bone cells.	10
Figure (4)	Osteoclast resorbing bone	11
Figure (5)	Osteosarcoma, causing swelling in the	20
	distal femur	
Figure (6)	X-ray of distal femur showing sunburst	21
	and Codman triangle	
Figure (7)	MRI illustrates extensive destruction of the	22
	distal third of the tibia and extraosseous	
	soft tissue extension.	
Figure (8)	Small cell OS in proximal femur, axial	22
	nonenhanced CT image	
Figure (9)	Gross specimen of osteosarcoma	26
Figure (10)	Osteoblastic osteosarcoma presenting as	26
	dense, granular to sclerotic grossly bone-	
	producing lesion	
Figure (11)	Chondroblastic osteosarcoma. The	27
	cartilage component is sufficiently large	
	and well organized to be clearly seen	
	grossly	
Figure (12)	Microscopic picture of osteoblastic	28
	osteosarcoma containing pleomorphic	
	malignant cells and coarse neoplastic	
	woven bone	• •
Figure (13)	Microscopic picture of chondroblastic	29
	osteosarcoma with neoplastic cartilage	
	merging with tumor bone	
Figure (14)	Microscopic picture of fibroblastic	30
	osteosarcoma containing fascicles of	
	malignant spindle cells adjacent to	
	deposits of neoplastic bone	

T. (15)		21
Figure (15)	Gross appearance of a telangiectatic	31
	osteosarcoma	
Figure (16)	Microscopic picture of telangiectatic	32
	osteosarcoma.	
Figure (17)	Microscopic picture of small cell	34
	osteosarcoma, round cell type (high power	
	photomicrograph)	
Figure (18)	Microscopic picture of small cell	34
	osteosarcoma, short spindle cell type	
	epithelioid-like pattern	
Figure (19)	Microscopic picture of low grade central	35
	osteosarcoma	
Figure (20)	Parosteal osteosarcoma involving the	36
	bones of the forearm grossly.	
Figure (21)	Microscopic picture of parosteal	37
	osteosarcoma.	
Figure (22)	Gross of surface lesion mass	38
Figure (23)	Periosteal osteosarcoma, high-powered	39
	photomicrograph.	
Figure (24)	High grade surface osteosarcoma	40
	involving the distal femur grossly.	
Figure (25)	Microscopic picture of high grade surface	40 &
9 (1)	osteosarcoma.	41
Figure (26)	Enneking's criteria for surgical margins	50
Figure (27)	Model of tumor progression and	58
	maintenance according to cancer stem cell	
	hypothesis.	
Figure (28)	Possible mechanisms leading to OS	64
	initiation.	0.
Figure (29)	Sex distribution among osteosarcoma	80
	cases.	
	- Cases.	
T1 (22)		0.1
Figure (30)	Age distribution within osteosarcoma	81
	cases	
Figure (31)	Type of osteosarcoma among studied	82

	cases.	
Figure (32)	Anatomical site of osteosarcoma in studied	82
	cases.	
Figure (33)	Grading of osteosarcoma in studied cases.	83
Figure (34)	Staging of osteosarcoma in studied cases.	84
Figure (35)	The high and low CD133 expression in	86
	group1and group2 cases.	
Figure (36)	Comparison between group 1 and 2	88
	regarding sex.	
Figure (37)	CD133 expression in relation to sex among	89
	OS cases in group 1.	
Figure (38)	CD133 expression in relation to sex among	89
	OS cases in group 2.	
Figure (39)	CD133 expression regarding different	91
	types of OS in group1.	
Figure (40)	CD133 expression regarding different	91
	types of OS in group 2.	
Figure (41)	Tumor sites in group 1 and group 2.	92
Figure (42)	Frequency of CD133 expression in relation	94
	to tumor site in group 1.	
Figure (43)	CD133 expression in relation to tumor site	94
	in group 2	
Figure (44)	Relationship between group 1 and 2	95
71 (47)	regarding tumor grade among OS cases	
Figure (45)	Relationship between CD133 expression	97
	and tumor grade in group 1	
Figure (46)	Relationship between CD133 expression	97
	and tumor grade in group 2	
Figure (47)	A scatter plot describes correlation	103
	between tumor necrosis index and mean of	
	CD133 expression in all patients.	
Figure (48)	A scatter plot describes correlation	104
	between tumor necrosis index and mean of	
	CD133 expression in group1.	
Figure (49)	ROC curve of TNI for predicting its effect	105

	on CD133 in group 1.	
	on CD133 in group 1.	
Figure (50)	Control positive cytoplasmic CD133 stain	106
	in epithelial cells lining tubules in normal	100
	kidney tissue (CD133 X 200).	
Figure (51)	High power view of previous figure (H&E	106
	X 100).	
Figure (52)	High power view of previous figure shows	107
	strong positive cytoplasmic CD133 stain in	
	90% of neoplastic cells (CD133 X 100).	
Figure (53)	Osteoblastic osteosarcoma, high grade,	107
	shows strong positive cytoplasmic CD133	
	in 90% of neoplastic cells (CD133 X 200).	
Figure (54)	High power view of previous figure shows	108
	strong positive cytoplasmic CD133 stain in	
	90% of neoplastic cells (CD 133 X 400).	
Figure (55)	High power view of previous figure shows	108
	moderate positive cytoplasmic CD133	
	stain in 50% of neoplastic cells (CD133 X	
	100).	
Figure (56)	Chondroblastic osteosarcoma, high grade,	109
	(H & E X200).	400
Figure (57)	High power view of previous figure (H & E X400).	109
Figure (58)	Chondroblastic osteosarcoma, high grade,	110
	with CD133 staining of the previous case	
	shows moderate positive cytoplasmic stain	
	in 90% of neoplastic cells (CD133 X200).	
Figure (59)	High power view of previous figure shows	110
	moderate positive cytoplasmic CD133	
	stain in 90% of neoplastic cells (CD133	
T' (50)	X400).	444
Figure (60)	Fibroblastic osteosarcoma, high grade	111
T' (64)	(H&E X 40)	111
Figure (61)	High power field of the previous case (H	111
Eigene (CO)	& E X 100)	110
Figure (62)	Fibroblastic osteosarcoma, high grade,	112

	with CD133 staining of the previous case	
	shows strong positive cytoplasmic stain in	
	98% of neoplastic cells (CD133 X 100).	
Figure (63)	High power view of previous figure shows	112
	strong positive cytoplasmic CD133 stain in	
	98% of neoplastic cells (CD133 X 200).	
Figure (64)	Telangiectatic osteosarcoma, high grade	113
	(H & E X100).	110
Figure (65)	High power view of previous figure (H &	113
	E X200).	
Figure (66)	Telangiectatic osteosarcoma, high grade,	114
9 (1.1)	with CD133 staining of the previous case	
	shows strong positive cytoplasmic stain in	
	90% of neoplastic cells (CD133 X40).	
Figure (67)	Parosteal osteosarcoma, low grade (H & E	114
riguie (07)	X100)	117
Figure (68)	High power view of previous figure shows	115
	moderate positive cytoplasmic CD133	
	stain in 70% of neoplastic cells (CD133 X	
	100)	
Figure (69)	Osteoblastic osteosarcoma, high grade	115
g ()	shows negative CD133 stain (CD133	
	X100).	
Figure (70)	Osteoblastic osteosarcoma, high grade	116
riguit (70)	with tumor necrosis 85% (H&E X 40).	110
Figure (71)		117
Figure (71)	Osteoblastic osteosarcoma, high grade	116
	with CD133 staining of the previous case	
	showing moderate cytoplasmic stain in	
	about 40% (CD133 X 40).	
Figure (72)	Osteoblastic osteosarcoma, high grade	117
	with tumor necrosis 50% (H&E X 40).	
Figure (73)	Osteoblastic osteosarcoma, high grade	117
-8	with tumor necrosis 50% shows moderate	
	cytoplasmic CD133 stain in about 80%	
	(CD133 X100).	
Figure (74)	Osteoblastic osteosarcoma, high grade	118
riguie (/4)		110
	with tumor necrosis 40% shows strong	

cytoplasmic CD133 stain in about 85%
(CD133 X100).

Introduction

Osteosarcoma (OS) is the most common primary, non-hematologic bone malignancy in childhood and adolescence, comprise almost 60% of the common histologic subtypes of bone sarcomas (**Tirino et al., 2011**).

Sarcomas are widely believed to develop as a result of genetic mutations in mesenchymal progenitor/stem cells. But the accurate cellular origin of most of these tumors remains unknown (**Tang et al.**, **2008**).

The cancer stem cells (CSCs) hypothesis predicts that only a small subset of cells within a tumor is capable of initiating a new tumor and sustaining its growth (Rosen et al., 2009). These CSCs are thought to divide asymmetrically, producing an identical daughter stem-like cell and a more differentiated cell, which upon subsequent divisions generates the vast majority of the tumor bulk (Gibbs et al., 2011).

The identification of human CSCs brought a hope for tumor management. Searching for specific surface markers on CSCs is the key to further investigate tumorigenesis, metastasis, recurrence and prognosis of tumors (**Zhang & Li, 2010**).

Specific cell surface markers required to isolate CSCs in solid tumors have not yet been well established (Neves & Freitas, 2010).

Many studies suggested that CD133 was a specific surface marker for stem cells and CSCs (**Zhang & Li, 2010**). Its interest as a cancer stem marker has grown dramatically since it appeared that it was able to identify a cancer initiating subpopulation in colon (**Gibbs et al., 2005**) and in hepatocellular carcinoma (**Ponti et al., 2005**). Moreover, CD133 cells have also been found melanoma (**Ricci-Vitian et al., 2007**) and in brain (**Tirino et al., 2008**).

CSCs have been already identified in bone sarcomas (Neves & Freitas, 2010). Cell cultures, from biopsy samples of primary osteosarcoma and chondrosarcoma tumors, were analyzed and revealed the presence of a subset of cells that displayed a positive reaction for mesenchymal stem cell markers Stro-1, CD105 and CD44 (Gibbs et al., 2005). In another study, CSCs were detected and characterized based on a CD133-positive profile in established osteosarcoma cell lines (Tirino et al., 2008). Nevertheless, none of the markers used are exclusively expressed by CSCs (Neves & Freitas, 2010).

Surgery, when applied early, can be curative, and preoperative chemotherapy has been shown to be effective in the management of localized chemosensitive tumors, significantly increasing the proportion of long-term survivors (**Tirino et al., 2011**). However, the CSCs are naturally resistant to most current chemotherapy due to their quiescent nature. This may explain why traditional chemotherapies can initially reduce the majority of the tumor bulk but fail to eradicate it in