MR diffusion weighted image in solid head and neck masses in pediatrics

Thesis Submitted for partial fulfillment of Doctorate Degree in Radiology

Presented by Heba Tallah Mohammed Yousry Abdullah Elnaggar

M.B., B. Ch., M. Sc Faculty of Medicine Ain Shams University

Supervised by **Prof. Dr. Hanan Mohammed Issa Ahmed**

Professor of Radiology Faculty of Medicine Ain Shams University

Prof. Dr. Rania Ali Maarouf

Professor of Radiology Faculty of Medicine Ain Shams University

Dr. Ahmed Mohammed Hussien

Lecturer of Radiology Faculty of Medicine Ain Shams University

Dr. Ayda ali youssef alsaeed

Lecturer of radiodiagnosis National cancer institute

Faculty of Medicine Ain Shams University 2015

Acknowledgement

First and for most, I feel always indebted to Allah,
The kindest and most merciful.

I wish to express my deepest thanks and sincere appreciation to **Prof. Dr. Hanan Mohammed Issa Ahmed,** Professor of Radiology, Faculty of Medicine, Ain Shams University for her great support and advice, her valuable remarks that gave me the confidence and encouragement to fulfill this work.

I also express my special gratitude and appreciation to **Dr. Ayda Ali Youssef Al-Saeed,** Lecturer of radiodiagnosis, National cancer institute for her valuable supervision, cooperation, and direction that extended throughout this work.

I would like also to thank all patients who participated in this study for their cooperation and help.

Last but not least, I can't forget to thank all members of my family.

Heba Tallah Mohammed Yousry Abdullah Elnaggar

List of Contents

Introduction	1
Aim of Work	4
Review of literatures	5
Radiological anatomy of the head and neck regions	5
Important Pathological Aspects of Head and Neck Solid Masses	31
Technique of MRI Examination in Head and Neck	70
Role of DWIs in Solid Head and Neck Masses	81
Patients and Methods	101
Results	106
Illustrative cases	119
Discussion	142
Summary	157
REFERENCES	161
الملخص العربي	

List of figure

Figure No.	Title	Page No.
Figure (1). Triangles of the	neck	7
	neck	
	/I illustrating Para-phayngeal space	
	tid space	
	aryngeal mucosal space	
=	icator space	
	strating infra-hyoid spaces	
	strating carotid space	
	eck spaces	
• , ,	classification	
	and sagittal T1WIs orbital structures	
	ing basal turns of cochlea and osseous sp	
-	ion,	
	nsal region,	
• , ,	cavity structures and spaces (at level or	
_		
	WI showing the floor of the mouth	
Figure (19): Axial T1WI Sub	mandibular space	27
Figure (20): Axial MRI T	1WI showing the normal fat-containing	g PPF (white
arrows)		28
Figure (21): Anatomic relat	tionship of the foramen rotundum and vi	dian canal 29
Figure (22): Multiple reacti	ve lymph nodes (arrows) in a 3-year-old	l child 33
Figure (23): MRI of a patie	nt with NHL showing bilateral lympho	ma lesions in
the neck region		37
	enhanced fat-saturated T1-weighted MF	-
	al carcinoma	
-	female with embryonal rhabdomyosa	
•	al neuroblastoma	
•	gnetic resonance imaging in the evalua	
	nonstrated by coronal fat-saturated conti	
· ·		
0 ,		
Figure (29): Retinoblastom	a in an 11-month-old boy	49

Figure (30): US longitudinal section and T2 fat suppressed coronal image showing	
the sack of marble sign pathognomonic for dermoid cyst	. 51
Figure (31): Immature teratoma	. 52
Figure (32): Thymic gland	. 53
Figure (33): Carotid body tumor.	. 55
Figure (34): Infantile haemangioma on the face with orbital extension	. 57
Figure (35): Venous malformation adjacent to the left mandible	. 57
Figure (36): Right posterior triangle Lipoma in T1WI and Fat supression	
Figure (37): Neurofibroma.	
Figure (38): Aggressive fibromatosis of the mandible.	
Figure (39): Fibromatosis colli.	
Figure (40): JNA in a 17-year-old male who presented with recurrent epistaxis	
Figure (41): Antrochoanal polyp	
Figure (42): Pilomatrixoma.	
Figure (43): Risk of malignancy by US. American Thyroid Association	
Guidelines	. 67
Figure (44): Contrast-enhanced axial MR image shows severe parotitis on left	
side	. 68
Figure (45): parotid gland primitive neuroectodermal tumor	. 69
Figure (46): Diagnostic Algorithm of Head and Neck Mass	
Figure (47): Ultrasonography showing enlarged rounded lymph nodes in a	
lymphoma patient	. 71
Figure (48): bilateral Warthin tumor in parotid gland (blue arrows)	
Figure (49): MR axial T1 and T2, T1 post contrast axial and coronal showing	
petrous bone rhabdomyosarcoma	. 79
Figure (50): MRA (3D/TOF/SPGR) of the neck shows a mass in the carotid	
bifurcation that splays internal and external carotid artery. Internal	
jugular vein is pushed out.	. 79
Figure (51): MR perfusion in 16 year old male with angiofibroma.	. 81
Figure (52): A representation of a tumour or tissue displaying heterogeneous	
cellularity.	. 83
Figure (53): RF gradient sequence	. 84
Figure (54): 10 years old male patient with nasopharyngeal mass reaching the	
skull base with no intracranial extension.	. 86
Figure (55): A and B: DWI (B 1000). There is high signal in the periventricular	
white matter and thalami consistent with hypoxic injury	. 88
Figure (56): Non-hodgkin's lymphoma.	
Figure (57): Venous malformation.	. 92
Figure (58): Images of SCC in the right maxillary sinus	. 93
Figure (59): Nasal scleroma in a 7-year-old girl	. 95

Figure (60): Male with squamous cell carcinoma of the hypopharynx and right	
sided nodal metastases.	95
Figure (61): large left sided metastatic node	96
Figure (62):: Metastatic left level II node	
Figure (63): Benign inflammatory process	97
Figure (64): 6 year old boy with rhabdomyosarcoma:	97
Figure (65): Pre- and post-reatment SCC with lymph node metastasis	98
Figure (66): Left gingivobuccal squamous cell carcinoma.	99
Figure (67): Right oral tongue squamous cell carcinoma	99
Figure (68): Demographic Characteristics of the study population	. 106
Figure (69): Pie chart showing the anatomical distribution of the lesions	. 108
Figure (70): Bar graph showing the classification of the lesions regarding their	
nature	. 108
Figure (71): Graph showing the number of the cases according to the	
histological diagnosis	. 110
Figure (72): Lesion classification by cMRI versus histopathaoloigy	. 113
Figure (73): Mean ADC value in benign or malignant lesions. Rounded markers	
represent individual observations. Squared marker represents the mean.	
Error bars represent the standard error of the mean (SE)	. 114
Figure (74): Receiver-operating characteristic (ROC) curve for discrimination	
between malignant and benign lesions using the ADC value	. 115
Figure (75): Lesion classification by ADC value <1 X10 ⁻³ mm ² /sec versus	
histopathology	. 117

List of table

Table No.	Title	Page No.
Table (1): Lymph nodes cla	ssification	14
Table (2): Causes of lympha	adenitis	32
Table (3): Ann Arbor classis	fication	36
Table (5): Demographic Ch	aracteristics of the study population	106
Table (6): Anatomical distri	bution of the lesions	107
Table (7): Histopathological	l classification of the cases	109
Table (8): Results of conver	ntional MRI	111
Table (9): Results of cMRI	VS histopathological results	112
Table (10): Diagnostic accu	racy of cMRI	113
Table (11): Mean ADC valu	ues of benign and malignant lesions	114
Table (12)		116
Table (13): Diagnostic accu	aracy of ADC <1x10 ⁻³ mm ² /sec derive	ed from ROC
curve analysis for	r the study sample	117

List of abbreviation

SMC: Sternocleidomastoid muscle

LN : Lymph nodes

CSF : Cerebro spinal fluid
EAC : External auditory canal
ICA : Internal carotid artery
OMC : Osteomeatal complex
PPF : Pterygopalatine fossa

NHL : Non-Hodgkin lymphoma

HL : Hodgkin lymphomaEBV : Epstein Barr virus

RECIST: Response evaluation criteria in solid tumors

IRECIST: Immune Response evaluation criteria in solid tumors

US : Ultrasonography

CT : Computed tomography

MRI : Magnetic resonance imaging
 DWI : Diffusion weighted imaging
 ADC : Apparent diffusion coefficient

RMS : Rhabdomyosarcoma

PNET: Primitive neuroectodermal tumor

NPC : Nasopharyngeal carcinoma

CBT : Carotid body tumor

JNA : Juvenile angiofibroma

ITF : infratemporal fossa)

SPF : sphenopalatine foramenPMF : pterygo-maxillary fissure

IOF : inferior orbital fissure

GA : General anesthesia

FDA : Food and drug administration

Elist of abbreviation

NSF : Nephrogenic systemic fibrosis

MRA : Magnetic resonance angiography

DCE : Dynamic contrast enhanced

RF : radiofrequency

ROI : Region of interest

SCC : Squamous cell carcinomaNCI : National Cancer Institute

ROC : receiver-operating characteristic

CI : Confidence interval

PPV : Positive predictive value(NPV) : Negaitive predictive value

SD : Standard deviation

Introduction

solid head and neck mass is a common finding in pediatric age group. It can present a diagnostic challenge on clinical and radiological levels. Differentiation of benign from malignant pediatric tumors is essential for treatment planning as well as for prognosis of malignant tumors. (Youssef et al. 2014)

Pediatric Populations are subdivided as follows:

- ✓ Newborn birth to 1 month of age
- ✓ Infant 1 month to 2 years of age
- ✓ Child 2 to 12 years of age
- ✓ Adolescent 12-21 years of age (*Nelson et al. 2015*)

Although the upper age limit used to define the pediatric population varies among experts, including adolescents up to the age of 21 is consistent with the definition found in several well-known sources. (*Rudolph et al 2011*).

The head and neck masses includes benign and malignant lesions. The most common benign masses are Hemangioma, Venous malformation, Neurofibroma, Pleomorphic adenoma, Inflammatory nodes, Tuberculous lymph node, Scleroma and Fibroma. (*Abdel Razek et al. 2009*)

The most common pediatric head and neck malignancies include non-Hodgkin lymphoma, Hodgkin lymphoma, rhabdomyosarcomas, thyroid malignancies, nasopharyngeal

carcinomas, salivary glands malignancies and neuroblastomas. (*Chadha and Forte 2009*)

The head and neck are regions that present both high anatomical and functional difficulties, making the precise diagnosis and staging of regional tumors a challenging task. (*Barbero et al. 2013*)

A variety of imaging techniques can help in characterization of pediatric head and neck masses. Ultrasound has a role in cystic lesions but cannot determine the nature of solid masses, CT is associated with radiation exposure. (Abdel Razek et al. 2009)

MR sequences provide very accurate information about tumor size and morphology and thanks to T2 high resolution sequences which clearly depict in most cases both location and morphological characteristics of tumors in head and neck regions. (*Barbero et al. 2013*)

Different routine pulse sequences of MR imaging cannot accurately differentiate benign from malignant tumors. Biopsy is commonly used, but it is invasive and may give false results. (Abdel Razek et al. 2009)

Diffusion weighted echo-planer MR imaging is a completely non-invasive technique for evaluation of the motion of microscopic water in tissues. The extent of translational

diffusion of molecules measured in the human body is referred to as the apparent diffusion coefficient (ADC). (Youssef et al. 2014)

The ADC is expected to vary according to the cellular density of the lesion. (Abdel Razek et al. 2009)

In normal tissues or in areas exhibiting vasogenic edema, the motion of water molecules is not limited and no restricted diffusion is noted. In tissues with cytotoxic edema or in highly cellular regions there is diffusion restriction and low ADC value. (*Shah et al.*, 2008)

The lower ADC value of the malignant lesions is explained by difference in histopathological features of benign and malignant tumors. Malignant tumors have enlarged nuclei, hyperchromatism and angulation of nuclear contourand they show hypercellularity. Theses histological characteristics reduce the extracellular matrix and the diffusion space of water protons in the extracellular and intracellular dimensions with a resultant decrease in ADC. (Youssef et al. 2014)

In the head and neck region, DWI has demonstrated usefulness in differentiating benign and malignant solid lesions and characterization of neck lymph nodes. (*Elshahat et al.2013*)

Aim of Work

The aim of the work is to assess the clinical usefulness of the ADC calculated from DW MR images in the characterization of the head and neck masses in pediatrics.

Review of literatures

Radiological anatomy of the head and neck regions

The neck region consists of two fascial layers; the superficial and the deep cervical fascia. The former is a thin layer of connective tissue between the dermis and the deep cervical fascia. It contains the platysma muscle, vessels, LNs and nerves. Teratoma, vascular malformations, lipoma, plexiform neurofibroma, keloid, scar and subcutaneous fat fibrosis are the most common lesions (*Meuwly et al 2005*)

The deep cervical fascia consists of four layers which share in the formation of the boundaries of the supra and infrahyoid deep neck spaces (*Hoppe et al 2014*)

The first one is the investing fascia which completely surrounds the neck then splits enclosing both the sternocleidomastoid and trapezius muscles. Then the pretracheal fascia encloses the contents of the visceral space. Then the paravertebral fascia encloses the paraspinous together with the prevertebral muscles to form the pre-vertebral space (*Morton et al 2011*)

The latter is divided into alar fascia anteriorly and true pre-vertebral fascia posteriorly. Eventually the carotid sheath surrounds the carotid arteries, the internal jugular vein and the vagus nerve (Alnoury and Lotfy 2010)The neck region is divided into two major triangles to facilitate the understanding of its regional anatomy: (fig1-1)

Anterior Triangle:

- ➤ The anterior triangle of the neck is bordered by the sternocleomastoid muscles (SCMs) and the mandible.
- ➤ The anterior triangle is divided into the suprahyoid and infrahyoid regions by the hyoid bone
- ➤ The suprahyoid region is divided into the submandibular and submental triangles by the mylohyiod muscle.
- ➤ The infrahyoid region is divided into the carotid and muscular triangles by the superior belly of the omohyoid muscle.
- ➤ The carotid triangle contains the carotid sheath (*Rayahi et al 2015*)

Posterior triangle:

- ➤ The posterior triangle is bordered by the SCMs, trapezius and clavicle.
- ➤ The inferior belly of the omohyoid muscle divides the posterior triangle into the superior and inferior regions.