Coronary artery bypass grafting in female is it different?

Thesis

Submitted for partial fulfillment of M.D. in Cardiothoracic surgery

Вy

Ahmed Samy Abdel-Sadek Dawood (MS), Ain Shams University

Under supervision by

Prof. Dr. Gamal Samy Saed

Prof. of Cardiothoracic Surgery Faculty of Medicine Ain Shams University

Prof. Dr. Mohamed Mohamed El-Fiky

Prof. of Cardiothoracic Surgery Faculty of Medicine Ain Shams University

Prof. Dr. Ahmed Abdel-Aziz Ibrahem

Prof. of Cardiothoracic Surgery Faculty of Medicine Ain Shams University

Prof. Dr. Hossam Eldin Ashor Abdel-Hamid

Ass. Prof. of Cardiothoracic Surgery Faculty of Medicine Ain Shams University

Faculty of Medicine
Ain Shams University
2015

Acknowledgement

I would like to express my gratitude and deep appreciation to Prof. Dr. Gamal Samy Saed, Professor of Cardiothoracic Surgery in Ain Shams University, for his kind guidance and supervision, and his real keen interest throughout the course of this work.

I am greatly indebted to Prof. Dr. Mohamed Mohamed Elfiky, Professor of Cardiothoracic Surgery in Ain Shams University, for his supervision, great interest and help to accomplish this work.

I wish to express my profound appreciation and gratitude to Prof. Dr. Ahmed Abdel-Aziz Ibrahim, Professor of Cardiothoracic Surgery, Ain Shams University for his support, trustful help, advice and kind criticism.

I would like to express my sincerest thanks and deepest gratitude to Prof. Dr. Hossam Eldin Ashor Abdel-Hamid, Assisstant professor of Cardiothoracic Surgery, Ain Shams University, for his kind guidance, great interest, and real help throughout the course of this work.

I am deeply grateful to all my family (Papa, my brothers, my wife and my little kids Nour, Salma and Hany) for their help and advice.

List of content

Title	Page No.
Introduction	1
Aim of the work	6
Review of literature	7
Chapter 1	7
Chapter 2	123
Patients and Methods	162
Results	169
Discussion	189
Summary and Conclusion	215
Reference	218
Arabic summary	

List of abbreviations

Abbreviations	Mean
CABG	Coronary artery bypass grafting
CAD	Coronary artery disease
ECG	Electrocardiogram
CHD	Coronary heart disease
MI	Myocardial infarction
LDL	Low density lipoprotein
HDL	High density lipoprotein
ACS	Acute coronary syndromes
NSTEMI	Non-ST-elevation myocardial infarctions
STEMI	ST-elevation myocardial infarctions
CCBs	Calcium channel blockers
ACE	Angiotensin converting enzyme
PCI	Percutaneous coronary intervention
LMWH	Low molecular weight heparin
ACC	American collage of cardiology
AHA	American heart association
CHF	Congestive heart failure
MACE	Major adverse cardiac event
DES	Drug eluting stents
BMS	Bare-metal stents
LITA	Left internal thoracic artery
LAD	Left anterior descending
CCS	Canadian Cardiovascular Society;
СТО	Chronic total occlusion

List of abbreviations (continue)

Abbreviations	Mean
EF	Ejection fraction
CVD	Cardiovascular disease
CRP	C-reactive protein
AMI	Acute myocardial infarction
NRMI-2	National Registry of Myocardial Infarction 2
HT	Hormone therapy
HERS	Heart and Estrogen/ Progestin Replacement Study
WHI	Women's health initiative
NCEP	National Cholesterol Education Program
ATP	Adult Treatment Panel
CDC	Center for Disease Control
BMI	Body mass index
Hs	high-sensitivity
C-IMT	Carotid-intima media thickness
EBT	Electron beam tomographic
IABP	Intra aortic balloon pump
NYHA	New York Heart Association

List of abbreviations (continue)

Abbreviations	Mean
MACCE	Major adverse cardiac and cerebrovascular events
COPD	Chronic obstructive pulmonary disease
SPECT	Single-photon emission computed tomography
CURE	Clopidogrel in Unstable Angina to Prevent Recurrent Events
CYP	cytochrome P450
RRR	relative risk reduction
PENTUA	Pentasaccharide in Unstable Angina
RCT	randomized controlled trial
M-H	Mantel Henzal

List of tables

Fig.	Title	Page No.
1	Main features of stable coronary artery disease	18
2	Traditional clinical classification of chest pain	21
3	Classification of angina severity according to the Canadian Cardiovascular Society	22
4	Revascularization versus medical therapy	48
5	Indication for revascularization in patients with stable angina or silent ischemia:	54
6	Percutaneous versus surgical revascularization	55
7	Recommendation for the type of revascularization (CABG or PCI) in patients with SCAD with suitable coronary anatomy for both procedures and low predicted surgical mortality	64
8	Possible non-acute coronary syndrome causes of troponin elevation	76
9	Cardiac and non-cardiac conditions that can mimic non-ST- elevation acute coronary syndomes	81
10	Criteria for high risk with indication for invasive management	97
11	Recommendations for invasive evaluation and revascularization in NSTE-ACS	105
12	Primary PCI for myocardial reperfusion in STEMI: indications and logistics	110
13	Primary PCI for myocardial reperfusion in STEMI: procedural aspects (strategy and technique)	117
14	Management and revascularization after fibrinolysis	121
15	Classification of CAD risk in women	151
16	Diagnostic value of various stress testing modalities in women	156
17	Comparison between the two studied groups as regards to the mean age:	170
18	Comparison between the two studied groups as regards to body mass index:	171
19	Comparison between the two studied groups as regards to ejection fraction:	171
20	Comparison between the two studied groups as regards to the haematocrit:	172

List of tables (continue)

Fig.	Title	Page No.
21	Comparison between the two studied groups as regards to the diabetes mellitus:	173
22	Comparison between the two studied groups as regards to clamp time and bypass time.	174
23	Comparison between the two studied groups as regards to the need for IABP, need for low dose and high dose inotropic drugs during surgery:	174
24	Comparison between the two studied groups as regards to lowest haematocrit level during operation:	176
25	Comparison between the two studied groups as regards to occurrence of arrhythmias during Operation	176
26	Comparison between the two studied groups as regards the mean days of hospital and ICU stay after surgery	177
27	Comparison between the two studied groups as regards the mean hours of mechanical ventilation	178
28	Comparison between the two studied groups as regards the mean blood loss during first 24 hours	178
29	Comparison between the two studied groups as regards to number of patient needs transfusion, number of patients need blood, plasma and platelet transfusion	179
30	Comparison between the two studied groups as regards to occurrence of complication	181
31	Comparison between the two studied groups as regards the need for reopening	181
32	Comparison between the two studied groups as regards the need for post operative IABP, need for inotropic drugs and Low Cardiac Output Syndrome	182

List of tables (continue)

Fig. No.	Title	Page No.
33	Comparison between the two studied groups as regards to highest bilirubin and creatinine post operative	183
34	Comparison between the two studied groups as regards to postoperative myocardial infarction and Atrial Fibrillation	183
35	Comparison between the two studied groups as regards to different complications	184
36	Comparison between the two studied groups as regards to hospital mortality	185
37	Relation between age, sex and mortality	187
38	Summary of some studies examining gender difference in mortality after CABG surgery	214

List of figure

Fig.	Title	Page No.
1	Arterial and venous systems of this heart	8
2	Venous drainage of the heart	9
3	Vascular supply of the heart	11
4	Coronary arteries of tortuous course	12
5	Differing distance of coronary arteries from epicardium	13
6	Origin of the coronary arteries	13
7	Left coronary artery with its branches	14
8	Anatomical relationships of left main coronary artery	14
9	Anatomy of the right coronary artery	15
10	Anatomy of the distal right coronary artery	15
11	Medical management of patients with SCAD	43
12	The spectrum of ACS	66
13	Targets for antithrombotic drugs	93
14	Organization of STEMI patient disposal	107
15	Nomogram to calculate percent of predicted exercise capacity for age for men and women	154
16	Comparison between the two studied groups as regards to the mean age	170
17	Comparison between the two studied groups as regards to the haematocrit	172
18	Comparison between the two studied groups as regards to the diabetes mellitus	173

List of figure (continue)

Fig.	Title	Page No.
19	Comparison between the two studied groups as regards to the need for low dose inotropic drugs.	175
20	Comparison between the two studied groups as regards to hospital stay.	177
21	Comparison between the two studied groups as regards to mean blood loss during first 24 hours.	179
22	Comparison between the two studied groups as regards to need blood transfusion.	180
23	Comparison between the two studied groups as regards to hospital mortality.	186
24	Comparison between the two studied groups as regards to mortality due to cardiac causes.	186
25	Comparison between the two studied groups as regards to mortality due to pulmonary causes.	187

Coronary artery bypass graft (CABG) surgery is a well-accepted treatment in patients with severe angina since the 1970s. Relief of anginal symptoms is still the major goal of CABG to obtain better quality of life, as well as increase of life expectancy (*Domburg et al.*, 2009).

Sex is a basic human variable that influences health and illness across the lifespan. There are differences between the sexes in the prevalence and severity of a wide range of diseases and medical conditions. Men and women have different patterns of illness, life spans, metabolism, and they respond differently to therapies. There are sex differences in the susceptibility to diseases and responses to environmental stresses and drug treatments (*Wizemann and Pardue*, 2001).

It is controversial as to whether there is a gender difference in postoperative clinical outcomes after coronary artery bypass grafting (CABG). Several large studies have demonstrated that female gender is a risk factor of CABG (Bukkapatnam et al., 2010; Kim et al., 2007; Vaccarino et al., 2002). In the risk models of both the Society of Thoracic Surgeons and the European System for Cardiac Operative Risk Evaluation, female gender is listed as one of the risk factors for CABG. Several reasons for a worse outcome in females compared with that in males have been proposed. Female patients who receive CABG are generally older and smaller

than men. Female patients also have more preoperative comorbidity such as diabetes and anemia. Furthermore, there is less frequent use of internal thoracic artery (ITA) grafts in females than in males (*Fukui and Takanashi*, 2010).

Risk factors of Coronary artery disease:

- 1- Inevitable factors (age, sex, race and family history).
- 2- Atherogenic factors (hypertension, hyperlipidemia and diabetes).
- 3- Life style (cigarette, immobility, obesity, tension and oral contraceptive pills consumption).
- 4- Paraclinic signs (cardiovascular disorder prior to clinical manifestation consists of electrocardiogram (ECG) changes, blood and histologic characteristics such as blood group A).
- 5- Laboratory manifestation such as increased homocystein more than 12 mcg dL⁻¹ (*Ilali and Taraghi, 2010*).

Diabetes confers a markedly increased risk of Coronary heart disease CHD events in both women and men and eliminates the protective effect of female sex on the risk of CHD. In women with and without diagnosed heart disease, diabetes raises the relative risk of heart disease mortality 3 to 10 fold relative to that of women without diabetes (*Wexler et al.*, 2005)

Different environmental factors and race in each location can affect on frequency of risk factors of myocardial infarction (MI) (*Polanczyk and Riberio*, 2009; Avezum et al., 2009; Madrigano et al., 2013).

In the women CHD develop about 10 years later than men and the role of risk factors is different in these two groups (*Anand et al.*, 2008).

Whereas almost two-thirds of men with coronary heart disease present with myocardial infarction or sudden death as the initial manifestation of disease, over 50% of women may have angina pectoris as their first symptom, yet establishing the diagnosis of ischemic heart disease in women remains problematic. This is, in part, due to the relatively high prevalence in women of chest pain in the absence of significant coronary artery stenosis (*Leopold and Jacobs*, 2003).

Women with acute coronary syndromes often present with symptoms patterns that differ from their male counterparts. Chest pain was the most frequently reported symptom in both men and women; however, women were more likely than men to present with mid-back pain, nausea and/or vomiting, dyspnea, palpitations and indigestion. Women who present for evaluation of an acute coronary syndrome complain of chest pain or pressure more frequently

than men. Similarly, in patients presenting with an acute myocardial infarction, men were significantly less likely to complain of neck pain, back pain, jaw pain, and nausea, than women (*Goldberg et al.*, 2000).

Women with CHD are more likely to have comorbidities, including heart failure, hypertension, and diabetes. Diabetic women are particularly vulnerable to complications of MI. Women hospitalized for acute MI are likely to be older than men and have more "silent" MIs. Women younger than 65 years of age are more than twice as likely to die from MI as men of the same age, possibly because diabetes, heart failure, and stroke are more prevalent in younger women; arterial narrowing is less and reactive platelet levels are higher in younger women; and plaque erosions are more common in premenopausal women (*Wenger*, 2004).

Women are less likely to be given effective interventions, which include aspirin, beta blockers, and thrombolytic agents. Women are also less likely than men to undergo diagnostic and therapeutic tests and procedures. Possible reasons include discrepancies in physician perception of the severity of coronary disease in men vs women and physician perception of the risks and efficacies of diagnostic and therapeutic procedures; higher rates of admission for women with ischemic symptoms in the absence of documented