Serum Homocysteine Level in Chronic Epileptic Patients

Thesis

By

Ahmad Kamal Shamseldin

M.B.,B.ch. Cairo University

Submitted in partial fulfillment of Master Degree in Neuropsychiatry

Supervised by

Prof. Dr. Manal Mahmoud Elkattan

Professor of Neurology Faculty of Medicine Cairo University

Prof. Dr. Amany Mahmoud Rabah

Professor of Neurology Faculty of Medicine Cairo University

Prof. Dr. Sahar Abdulaaty Sharaf

Professor of Clinical Pathology Faculty of Medicine Cairo University

> Faculty of Medicine Cairo University 2010

بسرح لالٹی لالرحمق لالرحمیے

(ما يسنوي الأعمى فالبصير الله في الظلمات في النوس) (فاطر: ٢٠،١٩)

(البقرة: ۲۵۷)

﴿ وقل سب زدني علما ﴾

(طه: ۱۱٤)

Acknowledgement

All thanks to Allah, the Greatest, the most Merciful, in the fashion that He likes and pleases. He gives all His creation guidance and blessings, and I, His humble servant, have received from Him such grace that I could not imagine or describe.

I am deeply indebted to **Prof. Dr. Manal Mahmoud Elkattan**, Professor of Neurology, Faculty of Medicine, Cairo
University, for her kind guidance and unlimited support.

My gratitude and appreciation to **Prof. Dr. Amany Mahmoud Rabah**, Assistant Professor of Neurology, Faculty of Medicine, Cairo University. She has spent her time and effort in close supervision of this thesis to be presented in its final shape.

I am thankful to **Prof. Dr. Sahar Abdulaaty**, Assistant Professor of Clinical Pathology, Faculty of Medicine, Cairo University. Her help, support and cooperation made this work possible.

Also, I should thank all my Professors and colleagues for their invaluable advice and help.

Finally, I express my gratitude to my family and friends for their continuous encouragement.

Contents

	Page
List of figures	v
List of tables	vii
Abbreviations	x
Introduction	xii
Homocysteine chemistry and metabolism	1
Hyperhomocysteinemia	9
The role of hyperhomocysteinemia in disease	21
The relationship between homocysteine and epilepsy	36
Epilepsy: a general overview	49
Subjects and methods	61
Results	72
Case presentation	91
Discussion	100
Summary and conclusions	110
References	115
Appendix	139
Arabic summary	145

List of figures

Number	Title	Page
Figure 1	Structure of homocysteine.	2
Figure 2	Metabolic pathways for homocysteine	4
	formation and removal.	_
Figure 3	Homocysteine metabolism.	6
	Folate serum concentrations in patients	
	with epilepsy stratified according to their	
Figure 4	homocysteine plasma concentration and	43
	vitamin B6 plasma concentrations in the	
	same strata of patients.	
Figure 5	Distribution of seizure types in the total	75
	patient group and subgroups.	13
Figure 6	Number and percentage of patients on AEDs	77
	monotherapy and polytherapy.	' '
Figure 7	Distribution of AED types by percentage in	77
	the patient subgroups on treatment.	
Figure 8	Mean homocysteine level in the patient	79
	subgroups.	
Figure 9	Mean homocysteine level in patients with	82
	different seizure types.	02
Figure 10	Mean homocysteine level in patients on	83
	monotherapy and polytherapy.	03
Figure 11	Mean homocysteine level in patients on	85
	different types of AEDs and combinations.	00
Figure 12	Mean homocysteine level in patients with	87

List of figures

	sub-therapeutic, therapeutic and toxic serum levels of AEDs.	
Figure 13	A page from the EEG of the patient presented in case 1, showing no abnormality.	92
Figure 14	A page from the EEG of the patient presented in case 2, showing no abnormality.	94
Figure 15	A page from the EEG of the patient presented in case 3, showing left centroparietal epileptic discharge.	96
Figure 16	A page from the EEG of the patient presented in case 4, showing multifocal epileptogenic foci with secondary generalization.	99

Recommendations:

findings

Monitor hcy

Careful use of AEDs in patients

A, but also to the risks associated with hyperhomocysteinemia.

Number	Title	Page
Table 1	Determinants of plasma total homocysteine	
	level	9
Table 2	Total homocysteine level in subjects aged 0-	14
	18 years	14
Table 3	Studies of possible mechanisms of vascular	22
	damage by hyperhomocysteinemia.	22
Table 4	Studies showing the relationship between	
Table 4	CSF-SAM, CSF-Hcy and tHcy, and different	26
	neuropsychiatric diseases.	
Table 5	Mechanisms of neuronal injury caused by	27
Table 5	homocysteine	41
	Concentrations of homocysteine and vitamin	
Table 6	B6 in plasma, and of vitamin B12 and folate	42
Table 0	in serum in the study by Schwaninger et	
	al., 1999.	
Table 7	Conditions that can mimic epileptic	52
	seizures.	34
Table 8	ILAE classification of seizures and epilepsy.	55
	in the state of the state of the pay.	
Table 9	Summary of American Academy of neurology	60
	(AAN) evidence-based guidelines levels A or	

List of tables

	B recommendation for AEDs use.	
Table 10	A summary of the selection criteria in this	65
	study.	03
Table 11	Outline for seizure assessment: Features of	67
	a seizure.	07
Table 12	Age distribution of the total patient group	73
Table 12	and subgroups.	73
Table 13	Sex distribution in the total patient group	73
	and subgroups.	73
Table 14	Distribution of patients with positive family	
Table 14	history for epilepsy among patient	74
	subgroups.	
Table 15	The seizure severity scale in the total patient	76
	group and subgroups.	70
Table 16	Number and percentage of patients with	
Table 10	sub-therapeutic, therapeutic or toxic serum	78
	levels in the patient subgroups on AEDs.	
Table 17	Homocysteine level in the total patient group	79
	(n=40) and three subgroups.	13
Table 18	Distribution of patients according to EEG	80
Table 16	findings in the patient group and subgroups.	00
Table 19	Comparison between males and females	81
	regarding serum homocysteine level.	01
Table 20	Comparison between patients experiencing	
	different seizure types regarding serum	82
	homocysteine level.	
Table 21	Comparison between patients on	83
	monotherapy and polytherapy regarding	55

List of tables

	serum homocysteine level.	
Table 22	Comparison of patients receiving different types of AEDs monotherapy regarding serum	84
	homocysteine level.	0.
Table 23	Comparison of patients receiving different	
	combinations of AEDs polytherapy regarding	85
	serum homocysteine level.	
Table 24	The significance of AEDs serum level on	
Table 24	homocysteine level in the total patient	86
	group.	
Table 25	Distribution by number and percentage of	
Table 25	anti-epileptic drugs number, type and serum	89
	level according to seizure type.	
Table 26	Correlation between age, seizure severity	
	scale, duration of illness and duration of	90
	treatment with homocysteine level.	

Abbreviations

Abbreviations

AAN	American Academy of Neurology
AD	Alzheimer's disease
AEDs	Anti epileptic drugs
A_{β}	beta-Amyloid
CBZ	Carbamazepine
СК	Creatinine Kinase
CSF	Cerebrospinal fluid
CSF-SAM	Cerebrospinal fluid-S-adenosyl methionine
CSF-tHcy	Cerebrospinal fluid-total homocysteine
DALY	Disability Adjusted Life Years
DTT	Dithiothreitol
EDTA	Ethylene-Diamine-Tetra-Acetate
EEG	Electroencephalogram
ESR	Eryrthocyte Sedimentation Rate
GGT	Gamma-Glutamyl Transferase

Abbreviations

GTC	Generalized Tonic-Clonic
ILAE	International League Against Epilepsy
MBP	Myelin Basic Protein
MRI	Magnetic Resonance Imaging
MS	Multiple sclerosis
MTHFR	Methylene tetrahydrofolate reductase
NIDDM	Non-Insulin Dependant Diabetes Mellitus
NMDA	N-Methyl D-Aspartate
PD	Parkinson's Disease
PHT	Phenytoin
SAH	S-Adenosyl Homocysteine
SAM	S-Adenosyl Methionine
SD	Standard Deviation
SGPT	Serum Glutamic Pyruvic Transaminase
tHcy	Total homocysteine

ABSTRACT

Epilepsy is a common chronic neurological disorder, which warrants prolonged, and often lifetime, treatment with AEDs. It is commonly associated with hyperhomocysteinemia, a known risk factor for vascular diseases, and which is also related to several other neurological diseases. Homocysteine is an experimental epileptogenic, and nearly 20% of patients with homocystinuria suffer from fits. Hyperhomocysteinemia in epileptic patients is probably related to administration of AEDs.

The aim of our present study is to assess the relationship between treatment with classic anti-epileptic drugs and serum homocysteine level, and to outline the impact of this relationship on patient control and management.

Accordingly we studied 40 patients with the diagnosis of idiopathic epilepsy, who were classified into 3 subgroups; group A which included 10 epileptic patients with newly diagnosed epilepsy or patients on no treatment for at least 6 weeks as a control group, group B which included 15 epileptic patients with controlled seizures and group C which included 15 epileptic patients with uncontrolled seizures. Subjects recruited in the study were subjected to the following: Thorough history taking and neurological laboratory investigations. examination. Routine **AEDs** serum level determination for patients receiving AEDs. Homocysteine serum level determination. Seizure severity scale estimation. Electroencephalography. Further research: Long term effects of AEDs with or without folate supplementation with respect to seizure control, cardiovascular disease, cognitive performance and mood. Effect of newer AEDs on homocysteine to evaluate their relative safety in cases of feared hyperhomocysteinemia. A prospective study of patients initiating AEDs monotherapy can provide information from intra-patient measurement of homocysteine which can outline the individual AEDs effect on homocysteine.

Keywords:

Serum homocysteine Chronic epileptic Hyperhomocysteinemia

Introduction

Introduction:

Elevated concentration of total homocysteine (Hcy) in plasma (> 12 micromol/l) is a risk factor for several diseases of the central nervous system. Epidemiological studies have shown a dose-dependent relationship between of and concentrations homocysteine the risk for neurodegenerative diseases. Homocysteine is a marker for B-B12 vitamin deficiency (folate. and B6). Hyperhomocysteinemia causes hypomethylation which is an important mechanism that links homocysteine to dementia.

(Herrmann et al., 2007)

The position of epilepsy is more sophisticated, since major anti-epileptic drugs have direct and powerful effects on homocysteine levels, and so the need for follow up of homocysteine levels and the suspicion of its causation in dyscontrol of patients is more justified. (Apeland et al., 2001)

Homocysteine is regarded as a neuroexcitatory substance, which is therefore used as an epileptogenic agent in experimental epileptology. Experiments "in vivo" as well as "in vitro" revealed its relation to N-Methyl D-Aspartate (NMDA) glutamate receptors, and its potential neurotoxicity.

(Kolínová et al., 2006)

AEDs increase serum homocysteine by lowering blood folate levels. Multiple studies have therefore concluded that folic acid supplementation is mandatory in epileptic patients on long term anti-epileptic drugs therapy, with greater stress on children. (Elliott et al., 2007)

Hyperhomocysteinemia is present in 15.5% of children receiving long-term AED treatment. Multidrug treatment and long duration of therapy enhance the risk for hyperhomocysteinemia. (*Huemer et al.*, 2005)

From the clinical aspect, hyperhomocysteinemia, mostly as a marker of the risk factor in the vascular damage, was often studied in patients treated with antiepileptic drugs. However, the neuroexcitatory influence of mild hyperhomocysteinemia was rarely discussed. (Kolínová et al., 2006)

Aim of the work:

The aim of this study is to assess:

- The relation between treatment with classic antiepileptic drugs and serum homocysteine level.
- Its impact on patient control and management.