Study of HLA-G genotypes in preeclampsia in relation to its mRNA expression in placental tissue

Thesis

Submitted for partial fulfillment of M.D degree in Medical Biochemistry

By

Magda Ibrahim Mohammed

Assistant Lecturer in Medical Biochemistry & Molecular Biology department

M.B.B.ch, Master of Medical Biochemistry & Molecular Biology

Supervised by

Professor Doctor: Noura M. El Kholy

Professor of Medical Biochemistry & Molecular Biology

Faculty of Medicine - Ain Shams University

Professor Doctor: Salah Taha Fayed

Professor of Gynecology and Obstetrics

Faculty of Medicine - Ain Shams University

Doctor: Maha M. Sallam

Assistant Professor of Medical Biochemistry & Molecular Biology

Faculty of medicine- Ain Shams University

Doctor: Hanan H. Shehata

Lecturer of Medical Biochemistry & Molecular Biology

Faculty of medicine- Ain Shams University

Faculty of Medicine - Ain Shams University-

دراسة أنواع جين HLA-G في مرض تسمم الحمل وعلاقتها بعمليه نسخ الحامض النووي الريبوزي الرسول الخاص به في نسيج المشيمة

رسالة مقدمة من الطبيبة/ ماجدة ابراهيم محمد

مدرس مساعد بقسم الكيمياء الحيويه الطبيه و البيولوجيا الجزيئيه توطئة للحصول على درجة الدكتوراة في الكيمياء الحيوية الطبية

تحت اشراف

الأستاذة الدكتورة / نورا محمد الخولى

أستاذ الكيمياء الحيويه الطبيه و البيولوجيا الجزيئيه

كلية الطب - جامعة عين شمس

الأستاذ الدكتور/ صلاح طه فايد

أستاذ امراض النساء و التوليد

كلية الطب – جامعة عين شمس

الدكتورة / مها محمد سلام

أستاذ مساعد الكيمياء الحيوية الطبيه و البيولوجيا الجزيئيه

كلية الطب – جامعة عين شمس

الدكتورة / حنان حسين شحاته

مدرس الكيمياء الحيوية الطبيه و البيولوجيا الجزيئيه

كلية الطب _ جامعة عين شمس

كلية الطب - جامعة عين شمس

2009

Acknowledgment

First and foremost we thank "ALLAH" the most merciful. I would like to express my sincere gratitude to Professor Noura M. El Kholy, Professor of Medical Biochemistry, Faculty of Medicine, Ain Shams University, for suggesting subject and plain of this research and for her judicious and meticulous effort in writing and revising the thesis. Her great support; patience, and constructive supervision throughout this work are beyond acknowledgment.

I am deeply grateful to Professor Salah Taha Fayed Professor of Gynecology and Obstetrics, Faculty of Medicine, Ain Shams University for providing the patient samples, for revising all clinical aspects of thesis, and for his continuous encouragement and support.

I wish to express my cordial thanks and gratitude to Assissant Professor Maha M Sallam, Assissant professor of Medical Biochemistry, Faculty of Medicine, Ain Shams University, for her great help and continuous valuable instructions and support throughout this study.

I wish to express my deep thanks for Dr. Hanan H. Shehata Lecturer of medical biochemistry, Ain Shams University for her great and honest help and support throughout and beyond this work.

I hope to thank every patient who participates in this study, with my hope to be in health through her life.

Finally, I wish to extend my thanks and gratitude to all my professors and colleagues in the Medical Biochemistry Department, Faculty of Medicine, Ain Shams University.

Abbreviations

ADMA Asymmetric Di Methyl Arginine

ANOVA Analysis of Variance

ANG2 angiopoietin 2

APC Antigen-Presenting Cells

aPL antiphosholipid

APS Ammonium PerSulfate

BLAST Basic Local Alignment Search Tool

BME β -Mercaptoethanol

C.S Cesarean Section

CCD Charged Coupled Devise

cGMP cyclic Guanosine MonoPhosphate

CTLs Cytotoxic T Lymphocytes

dATP deoxy Adenosine TriPhosphate

dCTP deoxy Cytosine TriPhosphate

ddNTP dideoxy Nucleotide TriPhosphate

dGTP deoxy Guanosine TriPhosphate

DIC Disseminated Intra vascular Coagulopathy

DNA Deoxy Nucleic acid

dNTP deoxy Nucleotide TriPhosphate

dsDNA Double-stranded DNA

DTT Dithiothretitol

dTTP deoxy Thymidine TriPhosphate

EDHF Endothelial Derived Hyperpolarizing Factor

EDTA Ethylene Diamine Tetra-acetic Acid

eNOS endothelial NO synthase

EVT ExtraVillous Trophoblast

FGR Fetal Growth Restriction

GTC guanidine thiocyanate

HELP H = hemolysis, **E**= elevated liver enzymes, **LP**= low platelet count

HIF-1 Hypoxia-Inducible Factor-1

HLA-G Human Leukocyte antigen-G

HDL High Density Lipoprotein

IFN-γ interferon gamma

Ig Immunoglobulin

IL-10 interleukin- 10

IL-2 interleukin-2

ITIM Intracellular Tyrosine Inhibitory Motifs

IUGR Intra-Uterine Growth Retardation

IVF In vitro Fertilization

JAKs Janus kinases

KDa Kilo Dalton

KIR killer Inhibitory Receptor

KIRs Killer Immunoglobulin Receptors

LDL Low density Lipoprotein

LIR-1 leukocyte Ig-like Receptor- 1

MHC Major Histocompatibility Complex

mRNA messenger Ribonucleic acid

NADPH nicotinamide adenine dinuclectide phosphate

NF-κB2 Nuclear Factor- κB2

NK Natural killer

NP Normal pregnancy

NPV Negative Predictive Value

PAH Pregnancy Associated Hypertension

PBMCs Peripheral Blood Monocytes cells

PCR Polymerase Chain Reaction

PE preeclampsia

PIH Pregnancy Induced Hypertension

PKG Protein Kinase G

PIGF Placental Growth Factor

PPV Positive Predictive Value

PVPP Polyvinyl Polypyrrolidone

P-value Probability value

RFLP Restriction Fragment Length Polymorphism

RNA Ribonucleic acid

ROC Receiver Operating Curve

RSA Recurrent Spontaneous Abortion

RT-PCR Reverse Transcriptase –Polymerase Chain Reaction

SA Spontaneous Abortion

sFlt-1 soluble fms-like tyrosine kinase-1

sHLA-G soluble HLA-G

SHP-1 SH2-containing protein tyrosine phosphatase

SNPs Single-Nucleotide Polymorphisms

SPSS Statistical Package of Social Science

ss DNA single stranded DNA

SSCP Strand Conformation Polymorphism

STATs Signal Transducers and Activators of Transcription

TAE Tris-acetate EDTA

TBE Tris-borate EDTA

TCR T-Cell Receptors

TEMED tetramethylethylenediamine

TGF-\$1 transforming growth factor-\$1

TH T-Helper

TNF-α Tumor Necrosis Factor- α

uNK uterine Natural Killer

3'UTR 3'-UnTranslated Region

5'URR 5'-Upstream Regulatory Region

VEGF Vascular Endothelial Growth Factor

WHO World Health Organization

List of Contents

Title	Page
Introduction & Aim of the Work	1
Review of Literature	
Immune tolerance in pregnancy	4
HLA	7
HLA-G	14
Preeclampsia	46
Material and Methods	78
Results	128
Discussion	157
Recommendations	174
Summary & Conclusion	175
References	180
Arabic Summary	

List of Figures

No. Figure	page
Fig (1): Antigen processing and presentation by MHC class I & II	9
Fig (2): MCH class I & II structures	11
\underline{Fig} (3): The structure of peptide antigen groove in MHC class I & I	[12
$\underline{\mathit{Fig}}$ (4) The non-classical human leukocyte antigen (HLA) class Ib go	enes
	15
Fig(5): Structure of HLA-G gene, mRNA and protein	18
Fig (6): Immuno cell targets of HLA-G molecule	30
Fig (7): Interaction between HLA-G and its receptor on APC	34
Fig (8): Flt1 and sFlt1 protein structures	- 61
Fig (9): Two-stage model of the pathophysiology of preeclampsia-	· - 64
Fig (10): Summary of pathogenesis of preeclampsia	68
Fig (11): Illustration of band quantitation by Quantity one com	puter
program version 4.6.3	102
Fig (12): (A): The principle of SSCP analysis (B) A sliver stained	SSCP
for single nucleotide polymorphism	111
Fig (13): The different steps in sequencing	123
Fig (14): The linear amplification of the gene in sequencing1	23
Fig (15): The separation of the sequenced molecules in polyacryla	amide
gel electrophoresis	124
Fig (16): The scanning and detection system on the ABI Prism	-125
<u>Fig (17)</u> Ethidium Bromide-Stained Agarose Gel Electrophoresis	of the
RT-PCR products of HLA-G and β-actin co-amplification	132

Fig (18):

A: Interactive dot diagram showing cut-off value of placental HLA-G
expression.
B: ROC curve analysis of placental HLA-G expression 135
Fig (19): Silver stained 10% polyacrylamide gel electrophoresis showing
SSCP patterns of HLA-G exon 4 alleles140
Fig (20) Chromatogram showing C-T substitution in codon 258 of exon 4-
141
Fig (21): Ethidium Bromide-Stained Agarose Gel Electrophoresis
showing the amplified PCR products of HLA-G exon 4 and exon 8146
Fig (22): Ethidium bromide stained 10% nondenaturating
polyacrylamide gel Electrophoresis showing different genotypes of 14bp
insertion/deletion polymorphism from placental tissue147

List of tables

No.	Table page
<u>Table</u>	(1): HLA-G polymorphism20
<u>Table</u>	(2) The HLA-G allele distributions in different ethnic population
	23
<u>Table</u>	(3): Previous HLA-G studies in preeclampsia41
<u>Table</u>	(4): Comparison between mild and severe preeclampsia51
<u>Table</u>	(5): Properties of HLA-G & β-actin mRNA primers90
<u>Table</u>	(6): RT-PCR master mix95
<u>Table</u>	(7): the properties of exon 4 and exon 8 primers106
<u>Table</u>	(8): PCR master mix composition of exons 4 & 8108
<u>Table</u>	(9) Clinical data and pregnancy outcome of total preeclamptic (PE)
group	, mild and severe PE subgroups as compared to normal pregnancy
(NP) c	ontrol group130
<u>Table</u>	(10) Placental HLA-G expression of total, mild and severe PE in
compa	rison to normal pregnancy (NP) group133
<u>Table</u>	(11) Receiver Operating Characteristic (ROC) curve analysis of
placer	tal HLA-G expression136
<u>Table</u>	(12): Comparison of placental HLA-G expression levels between
preecl	amptic and normal pregnancy groups according to the cut-off
value	calculated from the ROC curve 137

<u>Table (13):</u> Correlation between placental HLA-G expression and
pregnancy outcome and clinical data in all subjects of this study 138
$\underline{\it Table~(14)}$ Genotypes distribution of codon 258 *SNP in normal pregnant
group (NP), total preeclamptic (PE), mild and severe PE subgroups
142
<u>Table (15)</u> Comparison in pregnancy outcome and placental HLA-G
expression between different genotypes of codon 258143
<u>Table (16):</u> Comparison in HLA-G expression and pregnancy outcome
among different genotypes of codon 258 in NP and PE groups144
$\underline{\it Table~(17)}$ Genotypes distribution and alleles frequency of 14bp
insertion/deletion polymorphism among different groups 148
$\underline{\it Table~(18)}$ Comparison between mild and severe PE in genotypes
distribution and alleles frequency of 14bp insertion/deletion
polymorphism149
polymorphism149
polymorphism149 <u>Table (19)</u> Comparison in placental HLA-G expression between different
polymorphism149 <u>Table (19)</u> Comparison in placental HLA-G expression between different genotypes of 14 bp insertion/deletion polymorphism150
polymorphism

 $\underline{Table~(23)}$ Placental genotypes distribution of codon 258 SNP and 14bp insertion/deletion polymorphism in all subjects of this study-----156