

## Early Diagnosis of the American Foulbrood Disease of the Honeybee (*Apis mellifera* Linnaeus) in Egypt

## A Thesis Submitted for the Requirements for the Degree of Philosophy of Doctor (Entomology)

By
Shireen Ahmad Mahmoud Ma'moun
M. Sc.

### **Supervisors**

The late Prof. Dr. Ahmed Hassan Kaschef

Professor of Entomology (D. Sc.), Faculty of Science, Ain Shams University

Prof. Dr. Akila Mohamed El Shafai

Professor of Entomology, Faculty of Science, Ain Shams University

Prof. Dr. Mohamed Sayed Salama

Professor of Molecular Biology, Faculty of Science, Ain Shams University

Prof. Dr. Rabia Abd El Wahab Anan

Professor of Entomology, Faculty of Science, Ain Shams University

**Dr. Mohamed Ibrahim Imam** 

Lecturer of Entomology, Faculty of Science, Ain Shams University

Department of Entomology Faculty of Science Ain Shams University 2014

## **Biography**

Name: Shireen Ahmad Mahmoud Maamoun.

**Degree awarded:** Ph. D. (Entomology).

**Departement:** Entomology.

**Faculty:** Science.

**University:** Ain Shams University.

**Date of Graduation:** May, 2003.

Occupation: Assistant lecturer, Department of

Entomology, Faculty of Science,

Ain Shams University.

**Date of Appointement:** April, 2004.

**Date of registeration** 

For the Ph.D. Degree: June, 2010.

# Early Diagnosis of the American Foulbrood Disease of the Honeybee (*Apis mellifera* Linnaeus) in Egypt

### **Board of Supervision:**

#### Prof. Dr. Ahmed Hassan Kaschef

Professor of Entomology, Faculty of Science, Ain Shams University.

#### Prof. Dr. Akila Mohamed El Shafai

Professor of Entomology, Faculty of Science, Ain Shams University.

### Prof. Dr. Mohamed Sayed Salama

Professor of Molecular Biology, Faculty of Science, Ain Shams University.

#### Prof. Dr. Rabia Abd El Wahab Anan

Professor of Entomology, Faculty of Science, Ain Shams University.

#### Dr. Mohamed Ibrahim Imam

Lecturer of Entomology, Faculty of Science, Ain Shams University

## **Approval Sheet**

# Early Diagnosis of the American Foulbrood Disease of the Honeybee (*Apis mellifera* Linnaeus) in Egypt

| Approved By: |       |         |            |
|--------------|-------|---------|------------|
| Prof. Dr     |       |         |            |
|              |       |         |            |
|              |       |         |            |
|              | (Comm | ittee i | in charge) |
|              | Date: | /       | / 2014     |

## **DEDICATION**

This work is dedicated to the late eminent Prof.

Dr. Ahmad Hassan Kaschef, whose contributions in the field of biological research work are never forgettable

# بسم الله الرحمن الرحيم

وأوحي ربك الي النحل أن أتخذي من الجبال بيوتا ومن الشجر ومما يعرشون حميل ثم كلي من كل الثمرات فاسلكي سبل ربك ذللا يخرج من بطونها شراب مختلف ألوانه فيه شفاء للناس إن في ذلك لآية لقوم يتفكرون حميليكي

صدق الله العظيم سورة النحل أيه (٦٨ - ٦٩)

### <u>ACKNOWLEDGEMENTS</u>

First of all thanks to "ALLAH" to whom I relate any success in achieving any work in my life.

I feel very much indebted and obliged to the late **Prof. Dr. Ahmed Hassan Kaschef**, Professor of Entomology for suggesting the problem, and his kind supervision during the preparation of the work.

My deepest appreciation and respect with sincere thanks go to **Prof. Dr. Akila El Shafi,** Professor of Entomology for suggesting the problem, her excellent ideas, energetic guidance, constructive discussion and close supervision.

I am also particularly indebted to **Prof. Dr. Mohamed Sayed Salama**, Professor of Molecular biology for his generous assistance and guidance.

I wish to thank **Prof. Dr. Rabia Abd El Wahab Anan** Professor of Entomology for her help, critical review of the manuscript and wise advice.

I want to thank **Dr. Mohamed Ibrahim Imam** for his wise advice and continuous encouragement.

Finally, I wish to express my deep thanks to **Dr. Emad Nafea**, Honeybees' Research Center, Plant Protection Institute for his help.

Special thanks go to all members of the Entomology Departement, Faculty of Science, Ain Shams University for their encouragement and help during my work.

Deep thanks are also extended to members of Honeybees' Research Center, Plant Protection Institute, for their friendly cooperation and help during the period of the work.

Finally, ALLAH was the only one who made this work possible.

#### Abstract

The aim of this thesis is to investigate some practical aspects of American Foulbrood (AFB) diagnosis and control. Article I investigates the possibility to use composite sampling for diagnosis of AFB in apiaries through composite sampling of adult bees and honey. A reliable procedure for early detection of Paenibacillus larvae subsp. larvae (P. l. larvae), the causal agent of American Foulbrood disease (AFB) of honeybees (Apis *mellifera* L.) based on the polymerase chain reaction (PCR) and subspecies – specific KAT primers. A PCR amplicon of the expected size 550 bp only found in P. l. larvae strains was used for positive AFB. This PCR assay provides a specific detection for *P. l. larvae* from week 1 post infection even if there is no clinical symptoms appeared in a colony. The technique can be directly used to detect presence or absence of P. l. larvae spores in honeybee samples and contaminated honeys.

In article II we report the presence of the probiotic lactic acid bacterium (LAB) in the gut of the honeybee Apis mellifera. Partial 16S rRNA gene sequences of the bacterial flora found in the gut of the honeybee workers, revealed the presence of 7 novel LAB flora. Five of the anaerobic LABs are closely related to 5 different strains of the lactic acid bacteria *Lactobacillus kunkeei* species, One is closely related to a strain of Lactobacillus plantarum species and the last one is identical to a strain of species Fructobacillus fructosus. We evaluated the antagonistic effects of newly identified lactic acid bacteria (LAB) in the genera Lactobacillus and Fructobacillus, originating from the honeybee gut, on the honeybee pathogen, *Paenibacillus* larvae. We used inhibition assays on agar plates to investigate the effects of honeybee LAB on P. larvae growth in vitro. The individual LAB phylotypes showed

different inhibition properties against *P. larvae* growth on agar plates, whereas a combination of all seven LAB phylotypes resulted in a total inhibition (no visible growth) of *P. larvae*. The results demonstrate that honeybee specific LAB possess beneficial properties for honeybee health. Enhancing growth of LAB or applying LAB to honeybee colonies should be further investigated.

### **Keywords:**

Honeybee, American Foulbrood, Molecular Diagnosis, AFB control, Lactic Acid Bacteria, LAB identification and Probiotic control.

# **CONTENTS**

| Subject                                                   | Pages |
|-----------------------------------------------------------|-------|
| ACKNOLEDGMENTS                                            |       |
| Abstract                                                  |       |
| List of Tables                                            | i     |
| List of Figures                                           | ii    |
| List of Abbreviations                                     | vii   |
| I. Introduction                                           | 1     |
| II. Literature Review                                     | 6     |
| 1. Study organism: the Honeybee and Beekeeping hives      | 6     |
| 1. A. Honeybees' caste structure                          | 6     |
| 1. B. Beekeeping hives                                    | 12    |
| 2. American Foulbrood disease; diagnosis and treatment    | 13    |
| 2. A. Diagnosis of American Foulbrood disease             | 13    |
| 2. B. Treatments and prophylaxis of AFB disease           | 24    |
| III. Materials and Methods                                | 35    |
| 1. Source and rearing of honeybees                        | 35    |
| 2. Isolation and preparation of the, <i>Paenibacillus</i> |       |
| larvae larvae, AFB bacterial pathogen                     | 35    |

| Subject                                                                      | Pages |
|------------------------------------------------------------------------------|-------|
| 2.1. Source of the bacterial pathogen                                        | 35    |
| 2.2. Isolation and Cultivation of the bacterial pathogen <i>P. l. larvae</i> | 36    |
| 2.3. Identification and characterization of the bacterial pathogen           | 37    |
| 2.3.1. Morphological tests                                                   | 38    |
| 2.3.2. Microscopical tests                                                   | 38    |
| 2.3.3. Biochemical tests                                                     | 38    |
| 3. Field experiment and samples collection                                   | 39    |
| 3.1. Detection of <i>P. l. larvae</i> from adult honeybee and honey samples  | 40    |
| 3.1.1. Detection of <i>P. l. larvae</i> from adult honeybee samples          | 40    |
| 3.1.2. Detection of <i>P. l. larvae</i> from honey samples                   | 41    |
| 4. Isolation and preparation of the probiotic lactic acid bacteria (LAB)     | 42    |
| 5. DNA preparation and manipulation                                          | 43    |
| 5.1. Bacterial DNA isolation                                                 | 43    |
| 5.1.1. DNA isolation from <i>P. l. larvae</i> and LAB, cultured colonies     | 43    |
| 5.1.2. Bacterial DNA isolation from honeybee workers                         | 43    |

| Subject                                                                                | Pages     |
|----------------------------------------------------------------------------------------|-----------|
| 5.1.3. Bacterial DNA isolation from honey.                                             | 44        |
| 5.2. PCR amplification of 16S-rRNA gene                                                | 45        |
| 5.2.1. PCR primers and reaction mixtures                                               | 45        |
| 5.2.2. The PCR Temperature profiles                                                    | 48        |
| 5.3. Agarose gel electrophoresis                                                       | 49        |
| 5.4. Sequence analysis                                                                 | 50        |
| 6. Inhibition bioassays against <i>P. l. larvae</i> bacterial spores                   | 51        |
| 6.1. Lactic acid bacteria (LAB) inhibition bioassay                                    | 51        |
| 6.2. Oxytetracycline (Terramycine) antibiotic inhibition bioassay                      | 52        |
| 6.3. Royal jelly inhibition bioassay                                                   | 53        |
| IV. Results                                                                            | 55        |
| 1. AFB clinical diagnosis (field symptoms)                                             | 55        |
| 2. Identification and characterization of <i>P. l. larvae</i> , AFB bacterial pathogen | 56        |
| 2.1. Bacterial isolates                                                                | <b>56</b> |
| 2.2. Morphology of <i>P. l. larvae</i> bacterial colony                                | 57        |
| 2.3. Microscopic identification of <i>P. l. larvae</i> bacteria                        | 57        |

| Subject                                                                          | Pages |
|----------------------------------------------------------------------------------|-------|
| 2.4. Biochemical identification of <i>P. l. larvae</i> bacteria.                 | 58    |
| 2.4.1. Holst milk test                                                           | 58    |
| 2.4.2. Catalase test                                                             | 58    |
| 3. Field experiment observations and samples collected results                   | 59    |
| 3.1. Field experiment observations                                               | 59    |
| 3.2. Detection of <i>P. l. larvae</i> from adult honeybee and honey samples      | 59    |
| 3.2.1. Honeybee and honey samples bacterial cultivation results                  | 59    |
| 3.2.2. Honeybee and honey samples bacterial DNA KAT-PCR results                  | 66    |
| 4. Isolation and cultivation results of the probiotic lactic acid bacteria (LAB) | 70    |
| 5. PCR amplification and sequencing results                                      | 72    |
| 5.1. PCR amplification of 16S-rRNA genes                                         | 72    |
| 5.2. Sequencing results                                                          | 73    |
| 6. Inhibition bioassay results                                                   | 92    |
| 6.1. Lactic acid bacteria (LAB) inhibition bioassay                              | 92    |
| 6.2. Oxytetracycline (terramycine) and Royal jelly inhibition bioassays          | 94    |

| Subject                                                        | Pages |
|----------------------------------------------------------------|-------|
| V. Discussion                                                  | 97    |
| I. Early Diagnosis of AFB                                      | 100   |
| II. Treatment of the honeybee American Foulbrood (AFB) disease | 106   |
| III. Conclusions                                               | 116   |
| IV. Recommendations                                            | 117   |
| VI. Summary                                                    | 118   |
| VII. References                                                | 122   |
| VIII. Arabic Summary                                           | 153   |

# **LIST OF TABLES**

|                                                                                                                                                                                                                                                     | pages |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Table (1): PCR reaction components and their volumes for KAT primers                                                                                                                                                                                | 46    |
| Table (2): PCR reaction components and their volumes for 16s rRNA primers                                                                                                                                                                           | 47    |
| <b>Table (3):</b> A summary of cultivation results for detection of <i>P. l. larvae</i> from honey and honeybee samples collected from infected and control colonies for the first 4 weeks post-infection                                           | 65    |
| <b>Table (4):</b> KAT-PCR detection of <i>P. l. larvae</i> from honey and honeybee samples collected from infected and control colonies for the first 4 weeks post-infection                                                                        | 69    |
| Table (5): Inhibition of <i>P. l. larvae</i> bacterial spores, American Foulbrood (AFB) bacterial pathogen, by seven honeybee lactic acid bacteria (LAB) phylotypes and their combination, oxytetracycline (Terramycine) antibiotic and royal jelly | 96    |

i