Biochemical Changes in Experimental Diabetes before and after Treatment with Mangifera indica and Psidium guajava Extracts in Rats

Presented by

Dawlat Ahmed Sayed

A Thesis Submitted to Faculty of Science

In Partial Fulfillment of the Requirements for the Degree of M.Sc. of Science (Physiology)

> Zoology Department Faculty of Science Cairo University (2010)

APROVAL SHEET

Thesis Title

Biochemical Changes in Experimental Diabetes Before and After Treatment with Mangifera indica and Psidium guajava Extracts in Rats

Name of candidate

DAWLAT AHMED SAYED MOHAMED

Supervision committee

Prof. Dr. Sayed M. Rawi Professor of general physiology and Neurotoxicity, Zoology Department, Faculty of Science, Cairo University

Prof. Dr. Aida M. Saad

Professor of physiology,
The National Organization for Drug Control and Research

Dr. Iman M. Nasef
Lecture of physiology;
Zoology Department, Faculty of Science, Cairo University

Head of Zoology Department Prof. Dr. Kawthar Abo-Elala

ACKNOWLEDGEMENT

I am deeply thankful to God, by the grace of whom, the present work was realized.

I wish to express my deep gratitude to **Prof. Dr. Sayed Mohamed Rawi,** Professor of Physiology and Toxicology, Zoology Department, Faculty of Science, Cairo University, for his kindness, encouragement, guidance, patience and supervision. As a supervisor, he makes many suggestions, revised the results and followed the work step by step during the course of this study.

I would like to express my deepest gratitude and sincere thanks to Prof. **Dr.**Aida M. Saad, physiology Department in The National Organization for Drug

Control and Research for her support and kind encouragement.

I offer my deepest and great indebtedness to **Dr. Iman Morad Nasef**, Lecturer of Physiology, Zoology Department, Faculty of Science, Cairo University, for her continuous encouragement, and her supervision.

I offer my deepest thanks to **Dr. Adel Bakeer Kholoussy**, Professor of Pathology, Cairo University, for his help and assistance in the histopathology work.

Finally, my great thanks to my family, for their constant help, patience and encouragement during this study.

LIST OF ABBREVIATION

ALT : Alanine aminotransferase

ALP : Alkaline phosphatase

AST : Aspartate aminotransferase

B.W. : Body weightCoA : Coenzyme A

Diab. : Diabetic

Diab.-MI : Diabetic – treated with *Mangifera indica*

Diab.-PG : Diabetic – treated with *Psidium guajava*

Diab.-(MI-PG): Diabetic-treated with (Mangifera indica - Psidium

guajava)

DNA : Deoxy-Ribonucleic acid

Fig. : Figure

GBC : Glibenclamide

GLUT₂ : Glucose uptake transporter protein type two

HMG-CoA : Hydroxymethylgutaryl-Coenzyme A

IDDM : Insulin dependent diabetes mellitus

MANOVA : Multi-factor analysis of variance analysis

M. indica : Mangifera indica

mRNA : messenger Ribonucleic acids

NADPH : Nicotinamide adenine dinucleotide phosphate hydrogen

NIDDM : Non-insulin dependent diabetes mellitus

O.D. : Optical density

OGTT : Oral glucose tolerance test

P. guajava : Psidium guajavaSTZ : Streptozotocin

WHO : World Health Organization

LIST OF TABLES

	Pag
Table (1): Serum glucose level (mg/dl) of diabetic male albino rats	23
before and after treatment with different doses of	
Mangifera indica water extract post 7 days of continuous	
daily administration	
Table (2): Serum glucose level (mg/dl) of diabetic male albino rats	23
before and after treatment with different doses of Psidium	
guajava water extract post 7 days of continuous daily	
administration	
Table (3): Effect of treatment with streptozotocin (50 mg/kg) on body	47
weight gain of male albino rats "Rattus rattus".	
Table (4): The effect of oral administration of different plant aqueous	48
extracts and glibenclamide on the body weight gain of	
STZ-diabetic male albino rats "Rattus rattus"	
Table (5): Oral glucose tolerance test (OGTT) of normal and diabetic	52
male albino rats.	
Table (6): Multi-factor Analysis Of Variance (MANOVA) for OGTT of	54
diabetic and diabetic-treated rats at various period of time.	
Table (7): Effect of oral administration of different plant aqueous	55
extracts and glibenclamide on OGTT of STZ-diabetic	
male albino rats after one week.	
Table (8): Effect of oral administration of different plant aqueous	56
extracts and glibenclamide on OGTT of STZ-diabetic	
male albino rats after two weeks.	
Table (9): Effect of oral administration of different plant aqueous	58

- extracts and glibenclamide on OGTT of STZ-diabetic male albino rats after three weeks.
- **Table (10):** Effect of oral administration of different plant aqueous extracts and glibenclamide on OGTT of STZ-diabetic male albino rats after four weeks.
- **Table (11):** Concentration of various biochemical parameters in sera and liver of normal and STZ-diabetic male albino rats "*Rattus rattus*".
- Table (12): Serum insulin concentration (ng/ml) of diabetic and diabetic-treated male albino rats after four weeks of treatments with different plants extracts and glibenclamide.
- **Table (13):** Glycogen concentration in liver (mg/g tissue) of diabetic and diabetic-treated male albino rats after four weeks of treatments with different plants extracts and glibenclamide.
- Table (14): Total protein concentration in serum and liver of diabetic and diabetic-treated male albino rats after four weeks of treatments with different plants extracts and glibenclamide.

71

- **Table (15):** Total lipid concentration in serum and liver of diabetic and diabetic treated male albino rats after four weeks of treatments with different plants extracts and glibenclamide.
- Table (16): Alkaline phosphatase (ALP) activity in serum and liver of diabetic and diabetic-treated male albino rats after four weeks of treatments with different plants extracts and glibenclamide.

- Table (17): Alanine aminotransferase (ALT) activity in serum and liver
 of diabetic and diabetic-treated male albino rats after four
 weeks of treatments with different plants extracts and
 glibenclamide.
- **Table (18):** Aspartate aminotransferase (AST) activity in serum and liver of diabetic and diabetic-treated male albino rats after four weeks of treatments with different plants extracts and glibenclamide.

LIST OF FIGURES

			Page
Fig	(1): <u><i>F</i></u>	<u> Psidium guajava</u>	19
Fig	(2): <u></u>	<u>Mangifera indica</u>	20
Fig	(3):	Effect of graded doses of Mangifera indica leaves water	
		extract on blood glucose concentration of STZ diabetic rats	24
		after one week of continuous daily administration	
Fig	(4):	Effect of graded doses of Psidium guajava leaves water	
		extract on blood glucose concentration of STZ diabetic rats	24
		after one week of continuous daily administration.	
Fig	(5): I	Photomicrograph of pancreatic tissues of normal male albino	34
		rat.	
Fig	(6):	Photomicrograph of pancreatic tissues of streprozotocin	26
		diabetic rat after four weeks.	36
Fig	(7):	Photomicrograph of pancreatic tissues of streprozotocin	20
		diabetic rat treated with glibenclamide after four weeks.	38
Fig	(8):	Photomicrograph of pancreatic tissues of streprozotocin	
		diabetic rat treated with Mangifera indica extract after four	40
		weeks.	
Fig	(9):	Photomicrograph of pancreatic tissues of streprozotocin	
		diabetic rat treated with Psidium guajava extract after four	42
		weeks.	
Fig	(10):	Photomicrograph of pancreatic tissues of streprozotocin	
		diabetic rat treated with mixture of Mangifera indica and	44
		Psidium guajava extract after four weeks.	
Fig	(11):	Effect of streptozotocin on the body weight of different	49
		animal groups of male albino rats.	49

Fig (12): Effect of treatment with different plants extracts and	
glibenclamide on the body weight gain of STZ-diabetic	49
male albino rats.	
Fig (13): The oral glucose tolerance curve of normal and diabetic male	52
albino rats at different time interval.	53
Fig (14): Effect of different plants extracts and glibenclamide on	
glucose tolerance curve of diabetic and diabetic-treated male	57
albino rats at the first week.	
Fig (15): Effect of different plants extracts and glibenclamide on	
glucose tolerance curve of diabetic and diabetic-treated male	57
albino rats at the second week	
Fig (16): Effect of different plants extracts and glibenclamide on	
glucose tolerance curve of diabetic and diabetic-treated male	60
albino rats at the third week	
Fig (17): Effect of different plants extracts and glibenclamide on	
glucose tolerance curve of diabetic and diabetic-treated male	60
albino rats at the fourth week	
Fig (18): Insulin concentration in serum of diabetic and diabetic-	
treated rats after four weeks of treatment with different	66
plants extracts and glibenclamide	
Fig (19): Glycogen concentration in liver of diabetic and diabetic-	
treated rats after four weeks of treatment with different	66
plants extracts and glibenclamide	
Fig (20a): Total protein concentration in serum of diabetic and	
diabetic-treated rats after four weeks of treatment with	69
different plants extracts and glibenclamide	
Fig (20b): Total protein concentration in liver of diabetic and diabetic-	69
treated rats after four weeks of treatment with different	U

plants extracts and glibenclamide

Fig (21a): Total lipid concentration in serum of diabetic and diabetic-	
treated rats after four weeks of treatment with different	72
plants extracts and glibenclamide	
Fig (21b): Total lipid concentration in liver of diabetic and diabetic-	
treated rats after four weeks of treatment with different	72
plants extracts and glibenclamide	
Fig (22a): Alkaline phosphatase (ALP) activity in serum of diabetic and	
diabetic-treated rats after four weeks of treatment with	75
different plants extracts and glibenclamide.	
Fig (22b): Alkaline phosphatase (ALP) activity in liver of diabetic and	
diabetic-treated rats after four weeks of treatment with	75
different plants extracts and glibenclamide	
Fig (23a): Alanine aminotransferase (ALT) activity in serum of diabetic	
and diabetic-treated rats after four weeks of treatment with	77
different plants extracts and glibenclamide	
Fig (23b): Alanine aminotransferase (ALT) activity in liver of diabetic	
and diabetic-treated rats after four weeks of treatment with	77
different plants extracts and glibenclamide.	
Fig (24a): Aspartate aminotransferase (AST) activity in serum of	
diabetic and diabetic-treated rats after four weeks of	80
treatment with different plants extracts and glibenclamide.	
Fig (24b): Aspartate aminotransferase (AST) activity in liver of	
diabetic and diabetic-treated rats after four weeks of	80
treatment with different plants extracts and glibenclamide.	
Fig (25): Relative correlation between serum glucose concentration	
and hepatic glycogen content of treated streptozotocin-	82
diabetic male albino rats.	

Fig (26): Relative correlation between	een insulin level and glucose	
concentration in serum of	treated streptozotocin-diabetic	83
male albino rats.		
Fig (27): Relative correlation between	serum insulin level and hepatic	
glycogen content of treate	ed streptozotocin-diabetic male	83
albino rats.		
Fig (28): relative correlation between	serum insulin level and serum	
total proteins of treated stre	eptozotocin-diabetic male albino	85
rats		
Fig (29): Relative correlation between	serum insulin level and hepatic	
total protein concentration of	of treated streptozotocin-diabetic	85
male albino rats.		
Fig (30): Relative correlation between	n serum insulin level and serum	
total lipids concentration of	f treated streptozotocin-diabetic	86
male albino rats.		
Fig (31): Relative correlation between	serum insulin level and hepatic	
total lipids concentration of	f treated streptozotocin-diabetic	86
male albino rats.		
Fig (32): Relative correlation between	serum total protein content and	
ALP activity of treated stre	eptozotocin-diabetic male albino	88
rats.		
Fig (33): Relative correlation between	en hepatic total protein content	
and ALP activity of treate	ed streptozotocin-diabetic male	88
albino rats.		
Fig (34): Relative correlation between	en hepatic total protein content	
and AST activity of treate	ed streptozotocin-diabetic male	89
albino rats.		
Fig (35): Relative correlation between	en hepatic total protein content	89

- and AST activity of treated streptozotocin-diabetic male albino rats.
- Fig (36): Relative correlation between serum total protein content and
 ALT activity of treated streptozotocin-diabetic male albino
 rats
- Fig (37): Relative correlation between hepatic total protein content and ALT activity of treated streptozotocin-diabetic male 90 albino rats

ABSTRACT

Male adult albino rats were used to study the hypoglycemic effect of *Mangifera indica* and *Psidium guajava* aqueous extracts either used individually or in combination of as well as the effect of glibenclamide as reference sulfonylureas drug at the dose level of 0.5 mg/kg body weight in streptozotocin-diabetic rats. Preliminary test using different doses of each plant indicated that the most effective doses were 250 mg/kg body weight for each plant. Our studies was extended to include the effect of the tested doses on different biochemical parameters including serum insulin concentration, hepatic glycogen content, total proteins, total lipids and transaminases activities in serum and liver. In addition to the previously investigated analysis our study was also extended to include the histopathological effect of the tested materials on the pancreatic cells of STZ-diabetic rats.

The obtained data of the above mentioned investigations revealed great alleviation of the impaired glucose tolerance, serum insulin and hepatic glycogen content, also serum and hepatic total protein contents were increased as a result of treatment.

In STZ-diabetic rats, the activities of (ALT, AST and ALP) either detected in sera or hepatic tissues were increased, then the activities were improved as a result of treatments.

Also, the islets of Langerhans of STZ-diabetic rats showed vaculation and hydropic degeneration of many cells and the treatments stimulate the rate of recovery of the islet cells.

Key words:

Hypoglycemic, Streptozotocin, Mangifera indica and Psidium guajava

CONTENTS

INTRODUCTION	
AIM OF WORK REVIEW OF LITERATURE	
MATERIALS AND METHODS	
RESULTS.	
(I) Histopathological effects	
(II) Effect of treatment on body weight gain	
(III) Effect on oral glucose tolerance test (OGTT)	
(IV) Biochemical effects.	
(A) Concentration of various biochemical parameters in and liver of normal and diabetic male albino rats "Ra rattus"	ittus
(B) Effect of treatment with the tested materials glibenclamide on various biochemical parameters in sera liver of diabetic male albino rats " <i>Rattus rattus</i> "	and
(1) Serum insulin concentration	· • •
(2) Liver glycogen concentration	
(3) Total protein concentration	
(4) Total lipid concentration	
(5) Alkaline phosphatase activity	
(6) Alanine aminotransferase (ALT) activity	
(7) Aspartate aminotransferase (AST) activity	
(V) Relative correlations.	
(A) Glucose & Glycogen Correlation	
(B) Correlation between insulin and glucose, glycogen, t	
proteins and total lipids	
(1) Insulin-glucose & insulin-glycogen correlations	
(2) Insulin-total proteins correlation.	
(3) Insulin-total lipids correlation	• • • • • •
(C) Correlation between total proteins and enzyme activiti	ies:

(1) Total proteins-ALP activity	87
(2) Total proteins-AST activity	87
(3) Total proteins-ALT activity	87
DISCUSSION	91
SUMMARY	111
REFERANCES	115