

Site Evaluation for Waste Disposal Site in Eastern Cairo using Hydrogeochemical Techniques

A Dissertation

Present to

Chemistry Department

Faculty of Ain Shams University

By

Kamilia Hamed Hagagg Hamed

B.Sc. (2003), M.Sc. (2009) (Cairo University), Nuclear radiological Regulatory Authority.

For

The Degree of

Doctor of Philosophy in Science (Chemistry)

2015

Faculty of Science Chemistry Department

Site Evaluation for Waste Disposal Site in Eastern Cairo using Hydrogeochemical Techniques

Kamilia Hamed Hagagg Hamed

B.Sc. (2003), M.Sc. (2009) (Cairo University)

A Thesis Submitted for Doctor of Philosophy in Science (Chemistry)

2015

Under Supervision of:

Prof. Dr. Mohammed Fathy El-Shahat

Prof. of Inorganic and analytical Chemistry, Faculty of Science, Ain Shams University.

Prof. Dr. Mostafa A. Sadek

Prof. of Isotope Hydrology, Nuclear radiological Regulatory Authority.

Prof. Dr. Wafaa M. Salem

Prof. of Isotope Hydrology, Nuclear radiological Regulatory Authority.

Head of Chemistry Department

Prof. Dr. Hamed Younes Derbala

بنالية الخالية

صدق الله العظيم

IN THE NAME OF GOD THE MOST MERCIFUL THE MOST COMPASSIONATE

I BEGIN THIS THESIS

To
My Parents, My Dear
Husband and My Little
Familey

List of Symbols and Abbreviations

8‰ Permil deviation of the ratio of heavy isotope to light isotope from a

reference sample.

a.m.s.l. above mean sea level.

EC Electrical conductivity.

ppm part per million.

epm equivalent part per million.

WHO World Health Organization.

IAEA International Atomic Energy Agency.

EAEA Egyptian Atomic Energy Authority

Na% The division of sodium by the total cations in epm.

SAR Sodium Adsorption Ratio.

TDS Total Dissolved Solids.

TU Tritium Unit.

pmc percentage modern carbon.

GIS Geographic Information System.

CCME WQI Canadian Council of Ministers of the Environment.

MPC Maximum Permissible Concentration.

ICRP International Commission on Radiation Protection.

NCRP National Council on Radiation Protection and Measurements.

Acknowledgement

I am deeply thankful to god, by the grace of whom the progress and success of this work was possible.

I would like to express my deepest thanks and gratitude to my supervisor **Prof. Mohammed Fathy El-Shahat**, prof. Inorganic and Analytical chemistry, Faculty of Science – Ain Shams University for faithful help and continuous interest during this research.

It is my great pleasure to cordially express my sincere appreciation of all the efforts provided by Prof. Mustafa Abdel-Hamid Sadek, and Prof. Wafaa Mohammed Mustafa Salem, Professors of Isotope Hydrology, sitting and Environmental department, Nuclear radiological Regulatory Authority for their kind Supervision, cooperation, faithful help and continuous interest during this research.

Special thanks to my Huspand, Children my colleges espicially Dr Nagwa Nassar, and Dr Rafat Rayan, for their faithful help, kene encouragement and blessed prayers.

Kamilia Hamed Hagagg

CONTENTS

Contents	Page
Contents	I
Abstract	V
List of Tables	VI
List of Figures	X
Chapter 1: Introduction	1
1.1General outline	1
1.2Problem formulation and motivation	2
1.3 Objective, approach and activities conducted	2
1.4 Thesis structure	4
Chapter 2: Literature Review and Background Information	6
2.1 Literature review	6
2.2 Physical sitting of the study area	8
2.2.1 Location	8
2.2.2 Geomorphology	9
2.2.3 General hydrological settings	10
2.2.4 Hydrogeologic setting	12
2.3 Radioactive waste	14
2.3.1 Sources and types of radioactive waste in Egypt	14
2.3.2 Near surface disposal	16
2.3.3 Siting processes of waste disposal facility	16
2.3.3.1 Area survey stage	17
2.3.3.2 Site characterization stage	18
2.3.3.3 Site confirmation stage	18
2.4 Hydrochemical aspects	19

	Contents
2.4.1 Total dissolved salts (TDS)	19
2.4.2 Major cations	20
2.4.2.1 Sodium and Potassium	20
2.4.2.2 Calcium	20
2.4.2.3 Magnesium	21
2.4.3 Major anions	21
2.4.3.1 Bicarbonate	21
2.4.3.2 Chloride	22
2.4.3.3 Sulphate	22
2.4.4 Trace elements	22
2.4.4.1 Iron	22
2.4.4.2 Copper	22
2.4.4.3 Lead	23
2.4.4.4 Boron	23
2.4.4.5 Manganese	23
2.4.4.6 Zinc	24
2.4.4.7 Nickel	24
2.5 Water quality index	24
2.6 Environmental isotopes in hydrology	25
2.7 Groundwater vulnerability to contamination	27
2.8 Hydrological and contaminant transport modeling	28
2.8 Simulating groundwater flow	29
2.8.2 Contaminant transport simulation	30
2.8.3 Types of model	30
2.8.4 Probabilistic safety analysis model of a radioactive disposa	al 32
release.	

	Contents
Chapter 3: Techniques and Methodologies	33
3.1 Hydrochemical work	33
3.1.1 Sampling for hydrochemical analysis	34
3.1.2 Sampling for trace elements	34
3.1.3 Analytical work	34
3.1.3.1 Electrical Conductivity (EC)	34
3.1.3.2 Hydrogen ion concentration (pH)	35
3.1.3.3 Determination of Bicarbonate (HCO ₃ ⁻)	35
3.1.3.4 Major ions and trace element concentrations	36
3.2 Geographic Information System (GIS) applications	38
3.2.1 Groundwater vulnerability to contamination (DUPIT)	38
3.2.2 Water quality index	39
3.3 Probabilistic Risk Assessment (PRA) modeling	41
3.4 Capture zone delineation for pump and treat remediation	44
Chapter 4: Results and Discussion	47
4.1 Site survey stage	47
4.1.2 Verification of DUPIT index results	52
4.1.2.1 Isotopes Verification	52
4.1.2.2 Transit time verification	54
4.2 Site evaluation stage	57
4.2.1 Hydrochemical characterization and salinization processes the preferred potential site	s of 57
4.2.1.1 Ion distribution	60
4.2.1.2 Ion dominance and water chemical type	64
4.2.1.3 Piper Diagram	65
4.2.1.4 Major ions relations	68

Con.	tents
4.2.1.5 Ion exchange reactions	71
4.2.1.6 Saturation indices	72
4.2. 2 Water quality and usability	74
4.2.2.1 Water Quality Index (WQI) for human drinking and domestic uses	74
4.2.2.2 Water quality for livestock and poultry drinking	77
4.2.2.3 Evaluation of groundwater for irrigation purposes	78
4.2.2.4 Evaluation of groundwater for industrial purposes	81
4.2.3 Groundwater Contamination Risk Assessment (Probabilistic Risk Analysis Model)	82
4.2.3.1 Source term and repository failure component	83
4.2.3.2 Geosphere model component and groundwater contamination hazard	84
4.2.3.3 Radiological model component	94
4.2.3.4 Sensitivity analysis of some model parameters	96
4.3 Proposed scenario for contaminated groundwater remediation	99
Summary and Conclusion	102
References	108
Arabic Abstract	

LIST OF FIGURES

Figure	Page
Figure (1): Location map of the study area.	8
Figure (2): Topography of the study area using Digital Elevation	9
Model (3DEM).	9
Figure (3): The main geomorphic units of the study area (after	10
Hefney, 1983).	10
Figure (4): Geological Map of the study area (after El-Shazly et al,	4.4
1975a).	11
Figure (5): Generalized stratigraphic column of the study area	12
(modified after El-Shazly, 1975a).	12
Figure (6): Conceptual illustration of the waste classification	14
system and relevant disposal options (IAEA, 2009).	14
Figure (7): An overview of the ICP components.	37
Figure (8): Illustrative figure of the DUPIT methodology.	39
Figure (9): Flow Chart of the adopted WQI methodology in	40
conjugation with GIS.	
Figure (10): Illustrative figure of multibarrier system in a waste disposal facility	44
Figure (11): Illustrative figure of capture zone analysis (Julie,	46
2005).	40
Figure (12): Rating map of the Five parameters of DUPIT.	51
Figure (13): DUPIT suitability map of the study area.	51
Figure (14) : ¹⁴ C vs DUPIT index.	54
Figure (15) : ³ H vs DUPIT index.	54
Figure (16): δ^{18} O vs DUPIT index.	54

List of F	ligures
Figure (17): Travel Time of ³ H vs DUPIT index.	55
Figure (18): Travel Time of ¹⁴ C vs DUPIT index.	55
Figure (19): Travel Time of ⁶⁰ Co vs DUPIT index.	55
Figure (20): Travel Time of ⁵⁹ Ni vs DUPIT index.	56
Figure (21): Travel Time of ⁹⁹ Tc vs DUPIT index.	56
Figure (22): Travel Time of ⁹⁰ Sr vs DUPIT index.	56
Figure (23): Spatial distribution of TDS for all groundwater	61
Figure (24): The relationship between TDS and EC for the two	61
aquifers in the studied area.	01
Figure (25) : Spatial Distribution of Ca ²⁺ in the study area using	62
Super GIS.	02
Figure (26) : Spatial Distribution of Mg ²⁺ in the study area using	62
Super GIS.	02
Figure (27) : Spatial Distribution of Na ⁺ in the study area using	63
Super GIS.	03
Figure (28) : Spatial Distribution of K ⁺ in the study area using	63
Super GIS.	03
Figure (29) : Spatial Distribution of SO_4^{2-} in the study area using	64
Super GIS.	01
Figure (30) : Spatial Distribution of HCO ₃ ⁻ in the study area using	5 64
Super GIS.	01
Figure (31): Piper plot for geochemical classification of	66
groundwater.	00
Figure (32): Piper Diagram for groundwater samples of Miocene	67
aquifer in the study area.	07

Figure (33): Piper Diagram for groundwater samples of Quaternary	68
aquifer in the study area.	ÜĊ
Figure (34) : Relation between Na ⁺ and Cl ⁻ for the groundwater	69
samples in the two aquifers.	05
Figure (35): Relation between Ca ²⁺ and Cl ⁻ for the groundwater	70
samples in the study.	/(
Figure (36): Relation between Ca ²⁺ and Mg ²⁺ for the groundwater	70
samples in the study.	70
Figure (37) : relationship between $(Ca^{2+}+Mg^{2+})-(SO_4^{2-}+HCO_3^{-})$ vs	71
(Na^+-Cl^-) .	/ 1
Figure (38): Groundwater quality map for the study area.	77
Figure (39): Willcox classification for Quaternary aquifer in the	79
studied area.	15
Figure (40): Classification of Quaternary water samples of the	0.1
studied area based on U.S. Salinity Laboratory.	81
Figure (41) : C _{max} /MPC vs. Distance from release point for ³ H in four scenarios.	86
Figure (42) : C _{max} /MPC vs. Distance from release point for ¹⁴ C in	87
four scenarios.	0/
Figure (43) : C _{max} /MPC vs. Distance from release point for ⁹⁹ Tc in four scenarios.	88
Figure (44) : C _{max} /MPC vs. Distance from release point for ⁹⁰ Sr in	89
four scenarios.	0)
Figure (45): Safety distance and the mass in inventory for each	90
radioisotope and for each scenario.	
Figure (46): Variation of the plume duration (y) and contaminated	93
area of (km ²) of each radio isotopes with the distance (m) from the	93

release point in the four scenarios.	
Figure (47) : Time history of the annual effective dose of ³ H, ⁹⁹ Tc,	
and ¹⁴ C in groundwater at 50m flow distance from the releace point	94
in the 1 st scenario.	
Figure (48): Relation between Safety Distance and dispersion	98
coefficient for ³ H	98
Figure (49): Relation between Safety Distance and Seepage	98
velocity for ³ H.	98
Figure (50): Relation between Safety Distance and the initial mass	98
in inventory for ³ H.	90
Figure (51): Required pumping rate vs contaminated area in case of	100
³ H plume.	100
Figure (52): Required pumping rate vs contaminated area in case	100
of ¹⁴ C plume.	100
Figure (53): Required pumping rate vs contaminated area in case of	101
⁹⁹ Tc plume.	101
Figure (54): The geometry curves describing the capture zone of	103
³ H, ¹⁴ C, and ⁹⁹ Tc in the 4 th scenario.	103

LIST OF TABLES

Table	Page
Table (1): Radioactive waste types arise from the various activities	1 <i>5</i>
in Egypt (IAEA, 1994a).	15
Table (2) Stable isotopes of hydrogen and oxygen in the	26
hydrological cycle, (Bradleym et al., 1972).	
Table (3) : Use of one, two, and three dimensional models (Wang	21
and Anderson, 1982).	31
Table (4): Positions of the studied groundwater	33
Table (5): Barriers and failure scenarios used in the model, (Nair	43
1999).	43
Table (6): DUPIT index parameters and their classification	50
(Simsek, 2005).	
Table (7) : DUPIT index Classification (Simsek et al., 2005).	50
Table (8): Results of $\delta^{18}O$, D, ${}^{3}H$, and ${}^{14}C$ for some boreholes in the	52
study area, (Attia, 2009)	32
Table (9a): Results of major ions of groundwater samples in the	57
Miocene aquifer in the study area.	31
Table (9b): Results of trace elements of groundwater samples in	50
the Miocene aquifer in the studied area.	58
Table (10a): Results of chemical analyses of groundwater samples	58
in the Quaternary aquifer in the studied area.	
Table (10b): Results of trace elements of groundwater samples in	50
the Quaternary aquifer in the studied area.	59
Table (11): Statistical analysis of major cations for groundwater	59
samples in both aquifers.	33