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Abstract

As VLSI technology pushes into using advanced nodes down to 7nm and be-

low, designers and foundries have exposed to a significant set of yield prob-

lems. To combat yield failures, the semiconductor industry has deployed

new tools and methodologies commonly referred to as design for manufac-

turing (DFM). Most of the early DFM efforts concentrated on catastrophic

failures, or physical DFM problems. However a new area of yield failures

are now related to reliability and performance of the manufactured circuits,

and having increased emphasis on what is now called “Parametric Yield”

issues, and sometimes referred to as electrical-DFM (eDFM).

This thesis presents the parametric yield problems due to physical layout

parameters effects on the final circuit performance, with more focus on

their effects on Analog and Mixed signal (AMS) integrated circuits (ICs).

These layout effects are generally known as Layout Dependent Effects or

(LDEs). These parameters have to be considered in the design cycle and to

be back annotated into the schematics or layout for accurate simulations.

Thesis presents a complete eDFM solution that detects, analyzes, and fixes

electrical hotspots (e-hotspots) within an analog circuit design, those caused

by different process variations. Novel algorithms are proposed to implement

the engines used to develop this solution. The flow is granted a US patented

as of 2014.

The solution is examined on different designs, and at different technology

nodes, including a 130-nm parametrically-failing level shifter circuit used in

USB IP, which is verified with silicon wafer measurements that confirm the

iv



existence of parametric yield issues in the design. Additional experiments

are applied on a 65-nm industrial operational amplifier and voltage control

oscillator (VCO), as well as 45nm digital standard cell design. E-hotspot

devices with high variations in dc current are identified. After fixing the e-

hotspots, the variations in these designs are dramatically reduced to within

designer’s acceptance criteria, while saving the original circuit specifications.
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