

Ain Shams University

Faculty of Engineering

Electronics and Electrical Communication

Layout Dependent Effects on Nanometer IC Designs

A Thesis

Submitted in partial fulfillment for the requirements of Doctor of Philosophy Degree in Electrical Engineering Submitted by:

Haitham Mohamad Abd El Hamid Eissa

M. Sc. of Electrical Engineering

(Department of Electronics and Electrical Communications)

Ain Shams University, 2004

Supervised by:

Prof. Dr. Hany Fikry Ragai

Prof. Dr. Mohamed Amin Dessouky

Cairo 2016

EXAMINERS COMMITTEE

Name	:	Haitham Mohamad Abd El Hamid Eissa
Thesis	:	Layout Dependent Effects on Nanometer IC Designs
Degree	:	Doctor of Philosophy in Electrical Engineering
Department:		Department of Electronics and Communications

1.	Prof. Dr. Mohab Hussien Anis	
	Electronics and Communications Engineering	
	School of Science and Engineering,	•••••
	American University in Cairo - Egypt.	
2.	Prof. Dr. Khaled Mohamed Wageeh Sharaf	
	Electronics and Communications Department,	
	Faculty of Engineering,	•••••
	Ain Shams University, Cairo – Egypt.	
3.	Prof. Dr. Hany Fikry Mohamed Ragai	
	Electronics and Communications Department,	
	Faculty of Engineering,	•••••
	Ain Shams University, Cairo – Egypt.	
4.	Prof. Dr. Mohamed Amin Dessouky	
	Electronics and Communications Department,	
	Faculty of Engineering,	•••••
	Ain Shams University, Cairo – Egypt.	

Date: 23 / 5 / 2016

بسم الله الرحمن الرحيم

Statement

This thesis is submitted in partial fulfillment for the re-

quirements of Doctor of Philosophy Degree of Science

in Electrical Engineering, Faculty of Engineering, Ain

shams University. The author carried out the work in-

cluded in this thesis, and no part of it has been submit-

ted for a degree or a qualification at any other scientific

entity.

Haitham Mohamad Abd ElHamid Eissa

Signature

Date: 2016

2

Acknowledgments

In the name of Allah, the most gracious, the most merciful. I would like to express my sincere gratitude to my advisor Prof. Dr. Mohamed Dessouky, for his continuous support in my PhD study and research, for his patience, motivation, and immense knowledge. His guidance helped me in all steps in doing this research. My sincere thanks go to Prof. Dr. Hani Fikry, his supervision and guidance have helped me to get this thesis completed. Special thanks for Dr. Rami Fathy, we worked together to define problems in the field of parametric failures in integrated circuits. Dr. Rami focused on Lithographic effects, and this work focused on the Physical effects. Combining both works has created high value researches and publications. I am very grateful for my company Mentor Graphics supporting this study, and for my colleagues at Mentor Graphics; Abdel Rahman El-Mously, Amr Abu El-lil, Mohamed Al-Imam, Ahmad Ramadan, Ahmed Arafa, Amr Tosson, Hesham M. AbdelGhany, Sherif Hany, Mohamed Bahr, and Ahmad Wasiem. As well as those at Ain Shams university, and at Cairo university, Dr. Ahmed N. Mohieldin, Romany Sameer, Ahmed Hamza Sayed, Nader Hindawy, Amr Tarek, and A. Zein, all for their support and immense technical contribution. Also, my thanks goes to Dr. Mohab Anis, and Dr. David Nairn at Waterloo University, for their technical contribution. Dr. Sherif Hammouda, Dr. Hazem Said, and Dr. Sameh Tawfik for their technical contribution in ChameleonART. Dr. Sameh Tawfik; thank you for your professional help along the years, and may Allah bless your soul. My gratitude (and my prayers) goes to my father, Dr. Mohamed Abd ElHamid Eissa, the professor of Islamic History, who taught me how Islam fostered a great civilization that was a mentor for the whole world at the early modern times, may Allah bless him, and his soul rest in peace. My gratitude goes as well to my mother Nawal, for her kind encouragement to finish this work. Finally, special thanks, and love, goes for my family; my dear wife Noha, and my lovely kids; MennatAllah and Mahmoud. My deepest gratitude and thanks goes to my wife Noha for her continuous support, patience, encouragement and even helpful technical opinions; her endless support in the last couple of years helped me a lot to keep up, and to complete this work in the best possible way.

Haitham Eissa

2016

Abstract

As VLSI technology pushes into using advanced nodes down to 7nm and below, designers and foundries have exposed to a significant set of yield problems. To combat yield failures, the semiconductor industry has deployed new tools and methodologies commonly referred to as design for manufacturing (DFM). Most of the early DFM efforts concentrated on catastrophic failures, or physical DFM problems. However a new area of yield failures are now related to reliability and performance of the manufactured circuits, and having increased emphasis on what is now called "Parametric Yield" issues, and sometimes referred to as electrical-DFM (eDFM).

This thesis presents the parametric yield problems due to physical layout parameters effects on the final circuit performance, with more focus on their effects on Analog and Mixed signal (AMS) integrated circuits (ICs). These layout effects are generally known as Layout Dependent Effects or (LDEs). These parameters have to be considered in the design cycle and to be back annotated into the schematics or layout for accurate simulations. Thesis presents a complete eDFM solution that detects, analyzes, and fixes electrical hotspots (e-hotspots) within an analog circuit design, those caused by different process variations. Novel algorithms are proposed to implement the engines used to develop this solution. The flow is granted a US patented as of 2014.

The solution is examined on different designs, and at different technology nodes, including a 130-nm parametrically-failing level shifter circuit used in USB IP, which is verified with silicon wafer measurements that confirm the

existence of parametric yield issues in the design. Additional experiments are applied on a 65-nm industrial operational amplifier and voltage control oscillator (VCO), as well as 45nm digital standard cell design. E-hotspot devices with high variations in dc current are identified. After fixing the e-hotspots, the variations in these designs are dramatically reduced to within designer's acceptance criteria, while saving the original circuit specifications.

Contents

Li	st of	figures	viii
${f Li}$	st of	tables	xix
Li	st of	symbols and abbreviations	xxi
1	Intr	\mathbf{r} oduction	1
	1.1	Motivation	2
	1.2	IC Technology Advances	5
	1.3	Thesis outline	10
2	Lay	out Dependent Effects	12
	2.1	Layout Dependent Parameters	14
		2.1.1 Shallow Trench Isolation: Length of Diffusion Effects	16
		2.1.2 Shallow Trench Isolation: Diffusion to Diffusion Effects	17

	2.1.3	Well Proximity Effects	18
	2.1.4	Poly Spacing Effects: First & Second Poly Spacing	
		Effects	20
	2.1.5	Boundary Effects	21
2.2	Analys	sis of Layout Dependent Effects	22
	2.2.1	Proximity Effects on $45\mathrm{nm}/40\mathrm{nm}$ NMOS Transistor .	22
		Effects of Polysilicon Contour	23
		Effects of Nwell Contour	24
		Effect of Oxide_Diffusion Contour	25
	2.2.2	Proximity Effects on $45 \text{nm}/40 \text{nm}$ PMOS Transistor .	26
		Effects of Polysilicon Contour	26
		Effects of Nwell Contour	28
		Effect of Oxide_Diffusion Contour	29
2.3	Challe	enges in Current Analog Design Flows	31
2.4	Analog	g Design Sensitivity to Systematic Variations	32
2.5	Increa	sing Complexity of Electrical and Physical Constraints	33
2.6	State	of the Art	36
2.7	Lavou	t Aware Design Flows in Industry	36

	2.7.1	Flow 1: Cadence Variation Aware Flows (www.cadence.o	com)
	2.7.2	Flow 2: Solido Design Automation Flow	38
2.8	Layou	t Aware Design Flows in Academia	40
	2.8.1	Flow 3: The Impact of Layout Dependent Stress and Gate Resistance on High Frequency Performance and Noise in Multifinger and Donut MOSFETs, 2013	41
	2.8.2	Flow 4: Layout-Dependent-Effects-Aware Analytical Analog Placement, 2015	42
	2.8.3	Flow 5: Physical Verification Flow for Hierarchical Analog IC Design Constraints, 2015	43
	2.8.4	Flow 6: Schematic Driven Physical Verification: Fully Automated Solution for Analog IC Design, 2012	44
2.9	Layou	t Aware Design Flow Features	46
	2.9.1	Constraints Generator	46
	2.9.2	Hotspot Detection	46
	2.9.3	Sensitivity Analysis	47
	2.9.4	Hotspot Correction	47
2.10	Summ	ary	47
Pro	nosed	Electrical DFM Solutions for Analog Circuits	10

37

3.1	Intera	ctive Flow	50
	3.1.1	Stress Avoidance Flow	50
	3.1.2	LDE Characterization Flow	56
		Circuit Design Intents	57
		Block Detection	58
		Block Constraint Generation	58
		Block Layout Generation	58
		Block Layout & Contours Automatic Generation	59
		Block Data Generation	59
		Test Bench Simulations	60
3.2	Fully A	Automated Flow	60
	3.2.1	Parametric DFM Solution for Analog Circuits	60
		Intent-Driven Design Method	66
		Electrical Hotspot Detection Method	69
		Electrical Hotspot Analysis Method	73
		E-Hotspot Correction Engine	81
3.3	Summ	ary	86

4	Exp	perime	ntal Work and Results Discussions	87
	4.1	Intera	ctive Flow Experiments	87
		4.1.1	Operational Amplifier & Latched Comparator at 40nm Technology	87
		4.1.2	Transconductance Amplifier at 45nm Technology	93
		4.1.3	Standard Cell Analysis for Critical Paths	99
	4.2	Auton	nated Flow Experiments	105
		4.2.1	USB2.0 Full Speed Transmitter at 130nm Technology	105
			Case 1: Rise time	108
			Case 2: Fall time	108
		4.2.2	VCO Designed at 45nm Technology	110
	4.3	_	sed Flow Blocks in Comparison with the State of the	
		Art .		114
		4.3.1	Constraints Generator	115
		4.3.2	Hotspot Detection	115
		4.3.3	Sensitivity Analysis	116
		4.3.4	Hotspot Correction	116
	4.4	Propo	sed Overall Flows in Comparison with the State of the	
		Art .		117

	4.5	Summary	118
5 Conclusion and Future Work			
	5.1	Conclusion	119
	5.2	Future work	121
$\mathbf{A}_{\mathbf{l}}$	ppen	dices	123
\mathbf{A}	Ana	alog and Mixed Signal Market	124
В	Lay	out Dependent Parameters	129
\mathbf{C}	List	Of Thesis Publications	131
	C.1	Patents	131
	C.2	Journal and Related Conference Publications	132
	C.3	Pre-thesis	133
R	efere	nces	134

List of Figures

1.1	Moore's law [1]	6
1.2	IC Process Technology Innovations [1]	7
1.3	More than Moore [1]	8
1.4	Applications and Technologies at TSMC (www.tsmc.com) .	10
2.1	Shallow Trench Isolation (STI)	16
2.2	STI: Length of Diffusion Measurements	17
2.3	STI: Diffusion to Diffusion Effects (STIW)	18
2.4	Well Proximity Effects due to ion Implementation	19
2.5	Well Proximity Effects Measurements	19
2.6	Poly Spacing Measurements, SPA & SPB	20
2.7	Poly Spacing Effects on Idsat/Vtsat in NMOS/PMOS [2]	20