Assessment of Interleukin-6 in Anemia with Chronic Renal Failure

Chesis

Submitted for partial fulfillment of M.Sc Degree in Internal Medicine

By

Khaled Mohammed Hamada

M.B.B.Ch Tanta University

Under Supervision of

Prof. Dr. Hanan Hamed Abdel Hamid

Professor of Internal Medicine and Clinical Hematology Faculty of Medicine – Ain Shams University

Assist. Prof. Dr. Nevien Nabil Mostafa

Assistant Professor of Internal Medicine and Hematology Faculty of Medicine – Ain Shams University

Assist. Prof. Dr. Walaa Ali El-Salakawy

Assistant Professor of Internal Medicine and Hematology Faculty of Medicine – Ain Shams University

Faculty of Medicine

Ain Shams University

2015

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest gratitude and thanks to **Prof. Dr. Hanan Hamed Abdel Hamid,** Professor of Internal Medicine and Hematology, Faculty of Medicine – Ain Shams University, for her constructive criticism, unlimited help and giving me the privilege to work under her supervision.

My most sincere gratitude is also extended to **Assist. Prof. Dr. Nevien Nabil Mostafa,** Assistant Professor of Internal Medicine and Hematology, Faculty of Medicine – Ain Shams University, for her enthusiastic help, continuous supervision, guidance and support throughout this work.

Words fail to express my appreciation to Assist. Prof. Dr. Walaa Ali El-Salakawy, Assistant Professor of Internal Medicine and Hematology, Faculty of Medicine — Ain Shams University, for her the efforts and time she has devoted to accomplish this work.

Last but not least, I can't forget to thank all members of my Family, especially my **Parents** and my **Wife**, for pushing me forward in every step in the journey of my life.

Candidate

🖎 Khaled Mohammed Hamada

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	v
Introduction	0
Aim of the Work	4
Review of Literature	
Chapter (1): Chronic Renal Failure	5
Chapter (2): Anemia	32
Chapter (3): Anemia in chronic Renal failure	49
Chapter (4): Role of IL-6 in Anemia of chronic diseases and Anemia of CKD	
Patients and Methods	86
Results	92
Discussion	111
Summary and Conclusion	118
Recommendations	121
References	123
Arabic Summary	

List of Abbreviations

List of Abbi eviations

Full-term

ACE : Angiotensin converting enzyme

ACEIs : Angiotensin Converting Enzyme Inhibitors

ACR : Albumin- to-creatinine ratio

ADH : Antidiuretic hormone

Abbr.

ARBs : Angiotensin Ii Receptor Antagonists

ARE : Albumin excretion reate

CFU-E : Colony-forming unit-erythroid cells

CKD : Chronic kidney

CKD : Chronic kidney disease

CTGF : Connective tissue growth factor

DIC : Dissociated intravascular coagulopathy

EGF : Epidermal growth factor

EPO : Erythropoietien

ESA : Erythropoiesis-stimulating agent

ESRD : End stage renal disease

ET-1 : Endothelin-1

FSGS: Focal segmental glomerular sclerosis

GFR : Glomerular filtration rate

HUS : Hemolytic uraemic syndrome

KDIGO: Kidney Disease Improving Global Outcomes

MCP-1 : Monocyte chemotactic protein-1

List of Abbreviations (Cont.)

Abbr. Full-term

MCV : Mean corpuscular volume

NHANES: National Health and Nutrition Examination Survey

RAAS : Rennin-angiotensin-aldosterone system

RBC: Red Blood Cell

RHuEPO: Recombinant human erythropoietin

SD : Standard deviation

SPSS : Statistical package for social science

TGF-B: Platelet-derived growth factor-B

TNF : Tumor necrosis factor

TSAT : Transferrin saturation

TTP : Thrombotic thrombocytopenic purpura

List of Tables

Eable No	. Citle Page	e No.
Table (1):	NKF Kidney Disease Outcomes Quality Classification, Prevalence, and Action Plan for Stages of Kidney Disease.	
Table (2):	Classification of CKD based on presence or absence of systemic disease and location within the kidney of pathologicanatomic findings	
Table (3):	GFR categories in CKD	25
Table (4):	Albuminuria categories in CKD	26
Table (5):	Comparison between three studied groups according to demographic data	
Table (6):	Comparison between three studied groups according to renal function	94
Table (7):	Comparison between three studied groups according to cause of renal failure	
Table (8):	Comparison between three studied groups according to CBC	
Table (9):	Comparison between three studied groups according to ESR	
Table (10):	Comparison between three studied groups according to Iron, Ferritin and TIBC (IRON STUDY)	
Table (11):	Comparison between three studied groups according to IL 6	

List of Tables (Cont.)

Eable No	. Eitle	Page	No.
Table (12):	Correlation between IL 6 and distudied parameters in each group		106
Table (13):	Relation between IL6 with sex and of renal failure in group A		108
Table (14):	Relation between IL6 with sex and of renal failure in group B		109
Table (15):	Relation between IL6 with sex and of renal failure in group C		110

List of Figures

Figure No.	Citle	Page No.
Figure (1):	The lower limit of normal hemoglobin concentration in men, and children of various ages	women
Figure (2):	The hemoglobin oxygen (O ₂) dissocurve	
Figure (3):	Some of more frequent variations (anisocytosis) and shape (poikilo that may be found in different anem	cytosis)
Figure (4):	Red Blood Cell (RBC) inclusion may be seen in the peripheral blo in various conditions	od film
Figure (5):	Interleukin-6 and mechanisms for signalling.	-
Figure (6):	Pathogenesis of IL-6 in anemia of diseases	
Figure (7):	Comparison between three studied according to IL 6	

Introduction

hronic renal failure is a syndrome characterized by progressive and irreversible deterioration of renal function due to slow destruction of renal parenchyma, eventually terminating in death when sufficient numbers of nephrons have been damaged (*Suresh et al.*, 2012).

Chronic kidney disease (CKD) affects approximately 26 million adults in the United Sates and millions of others are at risk. CKD is associated with significant morbidity and mortality, and these patients face many other medical problems related to CKD (*Lankhorst and Wish*, 2010).

Renal diseases are associated with a variety of hemopoietic changes. Anemia parallels the degree of renal impairment and its most important cause is failure of renal erythropoietin secretion. Other factors include chronic blood loss, hemolysis and bone marrow suppression by retained uremic factors (*Suresh et al.*, 2012).

Anemia is a common problem in patients with CKD, and its incidence increases as glomerular filtration rate declines (*Lankhorst and Wish*, 2010).

There are other factors in chronic kidney disease which contribute to anemia. Acute and chronic inflammatory

conditions have a significant impact on anemia in the CKD population by proinflammatory cytokines decreasing EPO production and inducing apoptosis in colony-forming uniterythroid cells (CFU-E). The early induction of apoptosis in CFU-E cells stops the process of development into RBC. Inflammatory cytokines have also been found to induce the production of hepcidin, a recently discovered peptide generated in the liver, which interferes with RBC production by decreasing iron availability for incorporation into erythroblasts. Red blood cells also have a decreased life span in patients with CKD (*Besarab et al.*, 2009).

IL-6 appears to be the major cytokine responsible for the induction of hepcidin production in inflammation. Similarly, inflammatory cytokines such as IL-6 may also contribute to the increase in not only serum hepcidin but also serum ferritin in human diseases (*Shah and Agarwal*, 2013).

Inflammatory cytokines, such as interleukin-6 and TNF- α , have been shown to inhibit renal production of erythropoietin by activating GATA 2 binding protein and nuclear factor-kB. High levels of TNF- α and interleukin-6 have a tendency to inhibit proliferation of bone marrow erythroid progenitor cells (*Shah and Aragwal*, 2013).

Pekovic et al., study in the University Hospital Zemun-Belgrade reported that ESRD patients on dialysis with severe heaver anemia had higher levels of IL-6 and TNF- α . Those patients were malnourished and their nutritional parameters were bad, and total correction of anemia leads to significant decreases in the plasma concentrations of the inflammatory cytokines, IL-6 and TNF- α (*Pekovic et al.*, 2008).

Aim of the Work

The aim of this work is study the IL-6 as a marker of inflammatory process in anemia with chronic renal failure.

Chronic Renal Failure

CKD is a worldwide public health problem. The major outcomes of chronic kidney disease, regardless of cause, include progression to kidney failure, complications of decreased kidney function, and CVD. Increasing evidence indicates that some of these adverse outcomes can be prevented or delayed by early detection and treatment (*Remuzzi*, 2002).

Definition:

According to Kidney Disease Improving Global Outcomes (KDIGO), CKD is defined as abnormalities of kidney structure or function, present for > 3 months, with implications for health (*KDIGO*, *2013*).

Kidney damage refers to a broad range of abnormalities observed during clinical assessment, which may be insensitive and non-specific for the cause of disease but may precede reduction in kidney function. Excretory, endocrine and metabolic functions decline together as the chronic kidnet diseases. GFR is generally accepted as the best overall index of kidney function.

A GFR < 60 ml/min/1.73m2 is referred to as decreased GFR and a GFR 15 ml/min/ 1.73m2 a kidney failure. AKL may occur in patients with CKD and hasten the progression to kidney failure (*Hsu et al.*, 2008).