Intense Pulsed Light Technology versus Laser Technology in Dermatology

Essay

Submitted for Partial Fulfillment of Master Degree of Dermatology & Venereology

By

Ibrahim Mossaad Ahmed Mohamed M.B., B.Ch.

Supervised by

Prof. Dr. Ayman Sabry Hassan Elwan

Assistant Professor of Dermatology & Venereology Faculty of Medicine Ain Shams University

Dr. Ghada Fathy Mohamed
Lecturer of Dermatology & Venereology
Faculty of Medicine
Ain Shams University

Faculty of Medicine Ain Shams University 2009

تكنولوجيا الضوع النبضي المكثف مقارنة بتكنولوجيا الليزر في علاج الأمراض الجلدية

رسالة توطئة للحصول على درجة الماجستير في الأمراض الجلدية و التناسلية

مقدمة من الطبيب/ ابراهيم مسعد أحمد محمد بكالوريوس الطب و الجراحة

تحت إشراف أ.م.د. أيمن صبرى حسن علوان أستاذ مساعد الأمراض الجلدية و التناسلية

د.غادة فتحي محمد

كلية الطب- جامعة عين شمس

مدرس الأمراض الجلدية و التناسلية كلية الطب جامعة عين شمس

كلية الطب جامعة عين شمس 2009

Acknowledgment

First and foremost, thanks to God, the most beneficent and most merciful.

I wish to express my sincere appreciation and deepest gratitude to Dr. Ayman Hassan Elwan, Assistant Professor of Dermatology & Venereology, Faculty of Medicine, Ain Shams University, for his supervision, constructive encouragement, illuminating guidance as well as his support throughout this work. It was a great honor and a chance of a life time to work with him.

I am deeply grateful to Dr. Ghada Fathy Mohamed, Lecturer of Dermatology & Venereology, Faculty of Medicine, Ain Shams University, who devoted her time, effort and experience most generously throughout this work and for her help and valuable observations which made it possible to complete this work.

Finally, I would like to express my appreciation to my patients, my family and my colleagues who participated in one way or another in accomplishment of this work.

Contents

Subjects	Page
Chapter I	
- Definition of Laser	1
- History of Laser	1
- Idea of Laser	2
- Spontaneous and stimulated emission	3
-Properties of laser light	6
- Laser construction	9
- Laser light delivery	10
- Terminology	12
- Laser-tissue interactions	13
- Classification & types of lasers	17
- Indications of laser	25
- Side effects and complications of laser	26
- Laser hazards and safety	29
Chapter II (IPL)	
- History of IPL	32
- Biophysical interaction	33
- Description of the device used in IPL technolog	gy 35

Contents (continued)

Subjects	Page
- Kinds of devices used	37
- Indication and uses of IPL	38
- Adverse effects of IPL	57
- Contraindications of IPL	58
-Treatment Guidelines	59
- Treatment parameters and techniques	61
-Postoperative considerations	62
Chapter III IPL versus laser as regard	their
clinical application	
- Treatment of vascular lesions	65
- Treatment of pigmented Lesions	68
- Hair removal	68
- Skin photorejuvenation	69
- Treatment of some inflammatory dermatosis	70
- Treatment of Hypertrophic Scars and Keloids	71
Summary	73
References	79
Arabic Summary	•••••

List of Tables

Table No.	Title	Page
1	Kinds of IPL Devices	37

List of Figures

Figure No	Title	Page No
Figure (1)	Spontaneous emission	4
Figure (2)	Stimulated emission	5
Figure (3)	Monochromaticity and wavelenght	7
Figure (4)	Coherent and non coherent light	8
Figure (5)	Basic laser structure	10
Figure (6)	Laser light delivery	11
Figure (7a)	Absorption spectrum of oxyHb and	15
	melanin	
Figure (7b)	Laser tissue interaction	15
Figure (8)	Thermal effects of laser	16
Figure (9)	Solid state laser	18
Figure (10)	Typical gas laser	20
Figure (11)	Semiconductor laser	21
Figure (12)	IPL device	36
Figure (13)	Treatment of Facial redness	39
Figure (14)	Treatment of Angioma of neck	41
Figure (15)	Treatment of Poikiloderma	43
Figure (16)	Treatment of Portwine stain	44
Figure (17)	Treatment of Irregular pigmentation	46
Figure (18)	Treatment of Solar lentigines	46
Figure (19)	Treatment of Pigmented lesions	47
Figure (20)	Treatment of Excess unwanted hair	51

Figure (21)	Hair removal	52
Figure (22)	Photo rejuvenation	54
Figure (23)	Treatment of Sun damaged skin	55
Figure (24)	Treatment of Rosacea	56

List of Abbreviations

ALA	Amino-levulonic acid
Co ₂ laser	Carbon dioxide laser
_	
Cu	Copper
CW	Continuous wave
EMLA	Eutectic mixture of local anesthetics
Er: YAG	Erbium:Yutrium-Aluminuim-Garnet
laser	
GaAlAs	Gallium aluminum arsenide laser
laser	
GaAlP laser	Gallium aluminum phosphate laser
Ga As laser	Gallium-Arsenide laser
He-Ne laser	Heluim-Neon laser
HIV	Human immunodeficiency virus
IPL	Intense pulsed light
J/cm ²	Joule/centimeter ²
KTP	Potassium Titanyl Phosphate
LASER	Light amplification by the stimulated
	emission of radiation
LP-Alex	Long- pulse alexandrite laser
LPDL	Long-pulsed pulsed dye laser
MPE	Maximum permissible exposure
ms	Millisecond
mw	Milliwatt
Nd :YAG	Neodymium Yttrium Aluminum Garnet
laser	
nm	Nanometer
NOHD	Nominal ocular hazard distance
PDL	Pulsed dye laser
PIH	Post-inflammatory hyperpigmentation
P-n junction	Positive-negative junction

PPIX	Protoporphyrin IX
Q-switched	Quality switched
QS laser	Quality switched laser
ROYGBIV	Red, orange, yellow, green, blue, indigo and
	violet
SP-Alex	Short- pulse alexandrite laser
UVB	Ultraviolet-B
W/cm ²	Watt/centimeter ²

Chapter 1 Laser

Definition

The word Laser is an acronym for light amplification by the stimulated emission of radiation (*Reis and Powitzky*, 2002).

History

The concept of stimulated light emission was initially introduced by Einstein in 1917. He proposed that a photon of electromagnetic energy could stimulate the emission of another identical photon from atoms or molecules that are in an excited state (*Baxtor*, 1994).

The first laser was developed by Maiman in 1959 using a ruby crystal to produce red light with a 694.nm wavelength (*Berns et al.*, 1992).

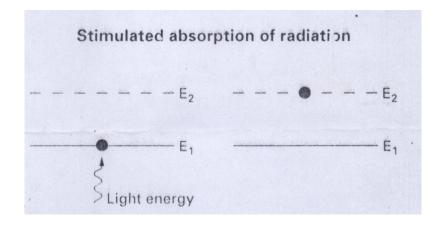
In 1963 Dr Leon Goldman pioneered the use of lasers for cutaneous applications by promoting ruby laser treatments for a variety of cutaneous pathologies (*Baxtor*, 1994).

The development of the Argon and carbon dioxide lasers soon followed and served as the focus for cutaneous laser research during the next 2 decades (*Baxtor*, 1994).

Cutaneous laser surgery was revolutionized in the 1980 with the introduction of the theory of "selective photothermolysis" by Anderson and Parrish. Application of their theory effects specific destruction of a target in the skin with minimal unwanted thermal injury (*Dougherty and Ryan*, 2002).

Idea of Laser

Laser systems are sources of high intensity of electromagnetic energy fluxes, with high monochromaticity and high spatial and temporal coherence. Therefore, laser radiation differs from other types of electromagnetic radiation in that it travels via a very narrow beam (*Baxtor*, 1994).


When a laser beam strikes the skin, there are four possible interactions: It can be reflected, absorbed, scattered or transmitted. A tissue effect can only occur if light is absorbed. Only 4 - 7% of light is reflected off the skin. Neither this nor transmitted light has a tissue effect (*Reis and Powitzky*, 2002).

Spontaneous and stimulated emission

Electrons surrounding an atom or molecuole can exist at more than one energy level. They are usually found at the lowest energy level or resting states where they are stable. Einstein in 1917 added the concept of stimulated emission to the known effect of spontaneous emission and stimulated absorption (*Berns et al.*, 1992).

In stimulated absorption an electron absorbs photons of energy and is raised to a higher energy level. In spontaneous emission photons of energy are released and the electrons return to the lower energy level. (Fig 1) (*Langigan*, 2000).

In stimulated emission an atom or molecuole is stimulated by an absorbed photon and after excitation emits a photon of the same frequency as the exciting photon. If the released photon collides with another atom in the excited state, another photon identical in phase, frequency and direction will be released as the atom returns to its stable state (Fig 2) (*Reis and Powitzky*, 2002).

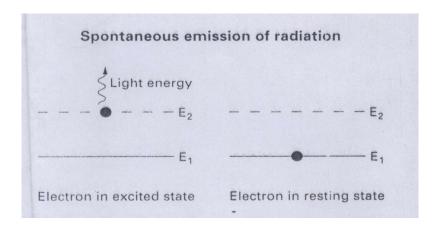
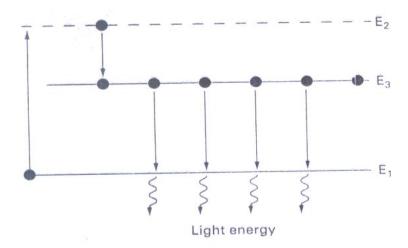



Fig. (1): Spontaneous emission (Langigan, 2000).

Metastable energy level (E₃) with population inversion and light emitted by stimulated emission

Fig. (2): Stimulated emission (*Langigan*, 2000).

In a laser it is necessary to have a large number of atoms in the excited state to be present. This occurs if there is a metastable energy level in which excited atoms remains in an excited state for sometime (*Baxtor*, 1994).

Once the population of electrons in the metastable excited state exceeds those in the stable state a population inversion has occurred. Photons emitted by electrons in this population in turn stimulate the release of further photons as electrons return from metastable to stable state. All the photons released by these events would be of the same wavelength and in phase (*Langigan*, 2000).

To amplify these events in a laser; a resonating or optical cavity containing the active medium has reflective mirrors at